513 resultados para 615.1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction We have previously shown that the concentrations of D-dimer are significantly elevated in saliva compared with plasma. Saliva offers several advantages compared with blood analysis. We hypothesised that human saliva contains plasminogen activator inhibitor-1 (PAI-1) and that the concentrations are not affected by the time of saliva collection. The aim was to adopt and validate an immunoassay to quantify PAI-1 concentrations in saliva and to determine whether saliva collection time has an influence in the measurement. Materials and methods Two saliva samples (morning and afternoon) from the same day were collected from healthy subjects (N = 40) who have had no underlying heart conditions. A customized AlphaLISA® immunoassay (PerkinElmer®, MA, USA) was adopted and used to quantify PAI-1 concentrations. We validated the analytical performance of the customized immunoassay by calculating recovery of known amount of analyte spiked in saliva. Results: The recovery (95.03%), intra- (8.59%) and inter-assay (7.52%) variations were within the acceptable ranges. The median salivary PAI-1 concentrations were 394 pg/mL (interquartile ranges (IQR) 243.4-833.1 pg/mL) in the morning and 376 (129.1-615.4) pg/mL in the afternoon and the plasma concentration was 59,000 (24,000-110,000) pg/mL. Salivary PAI-1 did not correlate with plasma (P = 0.812). Conclusions The adopted immunoassay produced acceptable assay sensitivity and specificity. The data demonstrated that saliva contains PAI-1 and that its concentration is not affected by the time of saliva collection. There is no correlation between salivary and plasma PAI-1 concentrations. Further studies are required to demonstrate the utility of salivary PAI-1 in CVD risk factor studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The modification of peripherally metalated meso-η1-platiniometalloporphyrins, such as trans-[PtBr(NiDAPP)(PPh3)2] (H2DAPP = 5-phenyl-10,20-bis(3‘,5‘-di-tert-butylphenyl)porphyrin), leads to the analogous platinum(II) nitrato and triflato electrophiles in almost quantitative yields. Self-assembly reactions of these meso-platinioporphyrin tectons with pyridine, 4,4‘-bipyridine, or various meso-4-pyridylporphyrins in chloroform generate new multicomponent organometallic porphyrin arrays containing up to five porphyrin units. These new types of supramolecular arrays are formed exclusively in high yields and are stable in solution or in the solid state for extended periods. They were characterized by multinuclear NMR and UV−visible spectroscopy as well as high-resolution electrospray ionization mass spectrometry.