92 resultados para 270701 Freshwater Ecology
Resumo:
Climate change will alter the basic physical and chemical environment underpinning all life. Species will be affected differentially by these alterations, resulting in changes to the structure and composition of present-day freshwater ecological communities, with the potential to change the ways in which these ecosystems function and the services they provide.
Resumo:
Bayesian Belief Networks (BBNs) are emerging as valuable tools for investigating complex ecological problems. In a BBN, the important variables in a problem are identified and causal relationships are represented graphically. Underpinning this is the probabilistic framework in which variables can take on a finite range of mutually exclusive states. Associated with each variable is a conditional probability table (CPT), showing the probability of a variable attaining each of its possible states conditioned on all possible combinations of it parents. Whilst the variables (nodes) are connected, the CPT attached to each node can be quantified independently. This allows each variable to be populated with the best data available, including expert opinion, simulation results or observed data. It also allows the information to be easily updated as better data become available ----- ----- This paper reports on the process of developing a BBN to better understand the initial rapid growth phase (initiation) of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay, Queensland. Anecdotal evidence suggests that Lyngbya blooms in this region have increased in severity and extent over the past decade. Lyngbya has been associated with acute dermatitis and a range of other health problems in humans. Blooms have been linked to ecosystem degradation and have also damaged commercial and recreational fisheries. However, the causes of blooms are as yet poorly understood.
Resumo:
Cat’s claw creeper, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation in coastal Queensland and New South Wales, Australia. In densely infested areas, it smothers standing vegetation, including large trees, and causes canopy collapse. Quantitative data on the ecology of this invasive vine are generally lacking. The present study examines the underground tuber traits of M. unguis-cati and explores their links with aboveground parameters at five infested sites spanning both riparian and inland vegetation. Tubers were abundant in terms of density (~1000 per m2), although small in size and low in level of interconnectivity. M. unguis-cati also exhibits multiple stems per plant. Of all traits screened, the link between stand (stem density) and tuber density was the most significant and yielded a promising bivariate relationship for the purposes of estimation, prediction and management of what lies beneath the soil surface of a given M. unguis-cati infestation site. The study also suggests that new recruitment is primarily from seeds, not from vegetative propagation as previously thought. The results highlight the need for future biological-control efforts to focus on introducing specialist seed- and pod-feeding insects to reduce seed-output.
Resumo:
1. A diverse array of patterns has been reported regarding the spatial extent of population genetic structure and effective dispersal in freshwater macroinvertebrates. In river systems, the movements of many taxa can be restricted to varying degrees by the natural stream channel hierarchy. 2. In this study, we sampled populations of the non-biting freshwater midge Echinocladius martini in the Paluma bioregion of tropical northeast Queensland to investigate fine scale patterns of within- and among-stream dispersal and gene flow within a purported historical refuge. We amplified a 639 bp fragment of mitochondrial COI and analysed genetic structure using pairwise ΦST, hierarchical AMOVA, Mantel tests and a parsimony network. Genetic variation was partitioned among stream sections using Streamtree to investigate the effect of potential instream dispersal barriers. 3. The data revealed strong natal site fidelity and significant differentiation among neighbouring, geographically proximate streams. We found evidence for only episodic adult flight among sites on separate stream reaches. Overall, however, our data suggested that both larval and adult dispersal was largely limited to within a stream channel. 4. This may arise from a combination of the high density of riparian vegetation physically restricting dispersal and from the joint effects of habitat stability and large population sizes. Together these may mitigate the requirement for movement among streams to avoid inbreeding and local extinction due to habitat change and may thus enable persistence of upstream populations in the absence of regular compensatory upstream flight. Taken together, these data suggest that dispersal of E. martini is highly restricted, to the scale of only a few kilometres, and hence occurs predominantly within the natal stream.
Resumo:
Adaptive phenotypic plasticity, the ability of an organism to change its phenotype to match local environments, is increasingly recognized for its contribution to evolution. However, few empirical studies have explored the molecular basis of plastic traits. The East African cichlid fish Astatoreochromis alluaudi displays adaptive phenotypic plasticity in its pharyngeal jaw apparatus, a structure that is widely seen as an evolutionary key innovation that has contributed to the remarkable diversity of cichlid fishes. It has previously been shown that in response to different diets, the pharyngeal jaws change their size, shape and dentition: hard diets induce an adaptive robust molariform tooth phenotype with short jaws and strong internal bone structures, while soft diets induce a gracile papilliform tooth phenotype with elongated jaws and slender internal bone structures. To gain insight into the molecular underpinnings of these adaptations and enable future investigations of the role that phenotypic plasticity plays during the formation of adaptive radiations, the transcriptomes of the two divergent jaw phenotypes were examined. Our study identified a total of 187 genes whose expression differs in response to hard and soft diets, including immediate early genes, extracellular matrix genes and inflammatory factors. Transcriptome results are interpreted in light of expression of candidate genesmarkers for tooth size and shape, bone cells and mechanically sensitive pathways. This study opens up new avenues of research at new levels of biological organization into the roles of phenotypic plasticity during speciation and radiation of cichlid fishes.
Resumo:
The rapid uptake of transcriptomic approaches in freshwater ecology has seen a wealth of data produced concerning the ways in which organisms interact with their environment on a molecular level. Typically, such studies focus either at the community level and so don’t require species identifications, or on laboratory strains of known species identity or natural populations of large, easily identifiable taxa. For chironomids, impediments still exist for applying these technologies to natural populations because they are small-bodied and often require time-consuming secondary sorting of stream material and morphological voucher preparation to confirm species diagnosis. These procedures limit the ability to maintain RNA quantity and quality in such organisms because RNA degrades rapidly and gene expression can be altered rapidly in organisms; thereby limiting the inclusion of such taxa in transcriptomic studies. Here, we demonstrate that these limitations can be overcome and outline an optimised protocol for collecting, sorting and preserving chironomid larvae that enables retention of both morphological vouchers and RNA for subsequent transcriptomics purposes. By ensuring that sorting and voucher preparation are completed within <4 hours after collection and that samples are kept cold at all times, we successfully retained both RNA and morphological vouchers from all specimens. Although not prescriptive in specific methodology, we anticipate that this paper will assist in promoting transcriptomic investigations of the sublethal impact on chironomid gene expression of changes to aquatic environments.
Resumo:
Snakehead fishes in the family Channidae are obligate freshwater fishes represented by two extant genera, the African Parachannna and the Asian Channa. These species prefer still or slow flowing water bodies, where they are top predators that exercise high levels of parental care, have the ability to breathe air, can tolerate poor water quality, and interestingly, can aestivate or traverse terrestrial habitat in response to seasonal changes in freshwater habitat availability. These attributes suggest that snakehead fishes may possess high dispersal potential, irrespective of the terrestrial barriers that would otherwise constrain the distribution of most freshwater fishes. A number of biogeographical hypotheses have been developed to account for the modern distributions of snakehead fishes across two continents, including ancient vicariance during Gondwanan break-up, or recent colonisation tracking the formation of suitable climatic conditions. Taxonomic uncertainty also surrounds some members of the Channa genus, as geographical distributions for some taxa across southern and Southeast (SE) Asia are very large, and in one case is highly disjunct. The current study adopted a molecular genetics approach to gain an understanding of the evolution of this group of fishes, and in particular how the phylogeography of two Asian species may have been influenced by contemporary versus historical levels of dispersal and vicariance. First, a molecular phylogeny was constructed based on multiple DNA loci and calibrated with fossil evidence to provide a dated chronology of divergence events among extant species, and also within species with widespread geographical distributions. The data provide strong evidence that trans-continental distribution of the Channidae arose as a result of dispersal out of Asia and into Africa in the mid–Eocene. Among Asian Channa, deep divergence among lineages indicates that the Oligocene-Miocene boundary was a time of significant species radiation, potentially associated with historical changes in climate and drainage geomorphology. Mid-Miocene divergence among lineages suggests that a taxonomic revision is warranted for two taxa. Deep intra-specific divergence (~8Mya) was also detected between C. striata lineages that occur sympatrically in the Mekong River Basin. The study then examined the phylogeography and population structure of two major taxa, Channa striata (the chevron snakehead) and the C. micropeltes (the giant snakehead), across SE Asia. Species specific microsatellite loci were developed and used in addition to a mitochondrial DNA marker (Cyt b) to screen neutral genetic variation within and among wild populations. C. striata individuals were sampled across SE Asia (n=988), with the major focus being the Mekong Basin, which is the largest drainage basin in the region. The distributions of two divergent lineages were identified and admixture analysis showed that where they co-occur they are interbreeding, indicating that after long periods of evolution in isolation, divergence has not resulted in reproductive isolation. One lineage is predominantly confined to upland areas of northern Lao PDR to the north of the Khorat Plateau, while the other, which is more closely related to individuals from southern India, has a widespread distribution across mainland SE Asian and Sumatra. The phylogeographical pattern recovered is associated with past river networks, and high diversity and divergence among all populations sampled reveal that contemporary dispersal is very low for this taxon, even where populations occur in contiguous freshwater habitats. C. micropeltes (n=280) were also sampled from across the Mekong River Basin, focusing on the lower basin where it constitutes an important wild fishery resource. In comparison with C. striata, allelic diversity and genetic divergence among populations were extremely low, suggesting very recent colonisation of the greater Mekong region. Populations were significantly structured into at least three discrete populations in the lower Mekong. Results of this study have implications for establishing effective conservation plans for managing both species, that represent economically important wild fishery resources for the region. For C. micropeltes, it is likely that a single fisheries stock in the Tonle Sap Great Lake is being exploited by multiple fisheries operations, and future management initiatives for this species in this region will need to account for this. For C. striata, conservation of natural levels of genetic variation will require management initiatives designed to promote population persistence at very localised spatial scales, as the high level of population structuring uncovered for this species indicates that significant unique diversity is present at this fine spatial scale.
Resumo:
An important responsibility of the Environment Protection Authority, Victoria, is to set objectives for levels of environmental contaminants. To support the development of environmental objectives for water quality, a need has been identified to understand the dual impacts of concentration and duration of a contaminant on biota in freshwater streams. For suspended solids contamination, information reported by Newcombe and Jensen [ North American Journal of Fisheries Management , 16(4):693--727, 1996] study of freshwater fish and the daily suspended solids data from the United States Geological Survey stream monitoring network is utilised. The study group was requested to examine both the utility of the Newcombe and Jensen and the USA data, as well as the formulation of a procedure for use by the Environment Protection Authority Victoria that takes concentration and duration of harmful episodes into account when assessing water quality. The extent to which the impact of a toxic event on fish health could be modelled deterministically was also considered. It was found that concentration and exposure duration were the main compounding factors on the severity of effects of suspended solids on freshwater fish. A protocol for assessing the cumulative effect on fish health and a simple deterministic model, based on the biology of gill harm and recovery, was proposed. References D. W. T. Au, C. A. Pollino, R. S. S Wu, P. K. S. Shin, S. T. F. Lau, and J. Y. M. Tang. Chronic effects of suspended solids on gill structure, osmoregulation, growth, and triiodothyronine in juvenile green grouper epinephelus coioides . Marine Ecology Press Series , 266:255--264, 2004. J.C. Bezdek, S.K. Chuah, and D. Leep. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems , 18:237--26, 1986. E. T. Champagne, K. L. Bett-Garber, A. M. McClung, and C. Bergman. {Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors}. Cereal Chem. , {81}:{237--243}, {2004}. S. G. Cheung and P. K. S. Shin. Size effects of suspended particles on gill damage in green-lipped mussel perna viridis. Marine Pollution Bulletin , 51(8--12):801--810, 2005. D. H. Evans. The fish gill: site of action and model for toxic effects of environmental pollutants. Environmental Health Perspectives , 71:44--58, 1987. G. C. Grigg. The failure of oxygen transport in a fish at low levels of ambient oxygen. Comp. Biochem. Physiol. , 29:1253--1257, 1969. G. Holmes, A. Donkin, and I.H. Witten. {Weka: A machine learning workbench}. In Proceedings of the Second Australia and New Zealand Conference on Intelligent Information Systems , volume {24}, pages {357--361}, {Brisbane, Australia}, {1994}. {IEEE Computer Society}. D. D. Macdonald and C. P. Newcombe. Utility of the stress index for predicting suspended sediment effects: response to comments. North American Journal of Fisheries Management , 13:873--876, 1993. C. P. Newcombe. Suspended sediment in aquatic ecosystems: ill effects as a function of concentration and duration of exposure. Technical report, British Columbia Ministry of Environment, Lands and Parks, Habitat Protection branch, Victoria, 1994. C. P. Newcombe and J. O. T. Jensen. Channel suspended sediment and fisheries: A synthesis for quantitative assessment of risk and impact. North American Journal of Fisheries Management , 16(4):693--727, 1996. C. P. Newcombe and D. D. Macdonald. Effects of suspended sediments on aquatic ecosystems. North American Journal of Fisheries Management , 11(1):72--82, 1991. K. Schmidt-Nielsen. Scaling. Why is animal size so important? Cambridge University Press, NY, 1984. J. S. Schwartz, A. Simon, and L. Klimetz. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment. Environmental Monitoring and Assessment , 179(1--4):347--369, 2011. E. Al Shaw and J. S. Richardson. Direct and indirect effects of sediment pulse duration on stream invertebrate assemb ages and rainbow trout ( Oncorhynchus mykiss ) growth and survival. Canadian Journal of Fish and Aquatic Science , 58:2213--2221, 2001. P. Tiwari and H. Hasegawa. {Demand for housing in Tokyo: A discrete choice analysis}. Regional Studies , {38}:{27--42}, {2004}. Y. Tramblay, A. Saint-Hilaire, T. B. M. J. Ouarda, F. Moatar, and B Hecht. Estimation of local extreme suspended sediment concentrations in california rivers. Science of the Total Environment , 408:4221--
Resumo:
Resolving species relationships and confirming diagnostic morphological characters for insect clades that are highly plastic, and/or include morphologically cryptic species, is crucial for both academic and applied reasons. Within the true fly (Diptera) family Chironomidae, a most ubiquitous freshwater insect group, the genera CricotopusWulp, 1874 and ParatrichocladiusSantos-Abreu, 1918 have long been taxonomically confusing. Indeed, until recently the Australian fauna had been examined in just two unpublished theses: most species were known by informal manuscript names only, with no concept of relationships. Understanding species limits, and the associated ecology and evolution, is essential to address taxonomic sufficiency in biomonitoring surveys. Immature stages are collected routinely, but tolerance is generalized at the genus level, despite marked variation among species. Here, we explored this issue using a multilocus molecular phylogenetic approach, including the standard mitochondrial barcode region, and tested explicitly for phylogenetic signal in ecological tolerance of species. Additionally, we addressed biogeographical patterns by conducting Bayesian divergence time estimation. We sampled all but one of the now recognized Australian Cricotopus species and tested monophyly using representatives from other austral and Asian locations. Cricotopus is revealed as paraphyletic by the inclusion of a nested monophyletic Paratrichocladius, with in-group diversification beginning in the Eocene. Previous morphological species concepts are largely corroborated, but some additional cryptic diversity is revealed. No significant relationship was observed between the phylogenetic position of a species and its ecology, implying either that tolerance to deleterious environmental impacts is a convergent trait among many Cricotopus species or that sensitive and restricted taxa have diversified into more narrow niches from a widely tolerant ancestor.