151 resultados para 2016 Crop Condition
Resumo:
We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.
Resumo:
This paper presents a novel crop detection system applied to the challenging task of field sweet pepper (capsicum) detection. The field-grown sweet pepper crop presents several challenges for robotic systems such as the high degree of occlusion and the fact that the crop can have a similar colour to the background (green on green). To overcome these issues, we propose a two-stage system that performs per-pixel segmentation followed by region detection. The output of the segmentation is used to search for highly probable regions and declares these to be sweet pepper. We propose the novel use of the local binary pattern (LBP) to perform crop segmentation. This feature improves the accuracy of crop segmentation from an AUC of 0.10, for previously proposed features, to 0.56. Using the LBP feature as the basis for our two-stage algorithm, we are able to detect 69.2% of field grown sweet peppers in three sites. This is an impressive result given that the average detection accuracy of people viewing the same colour imagery is 66.8%.
Resumo:
Multimetric ecological condition assessment has become an important biodiversity management tool. This study was the first to examine the reliability of these ecological surrogates across variable environments, and the implications for surrogate efficacy. It was demonstrated that through strategic application and design of the multimetric ecological condition index, the effects of environmental gradients and disturbance regimes can be mitigated, and that ecological condition assessment may serve as a scientifically rigorous approach for conservation planning.
Resumo:
Recently, partially ionic boron (γ-B28) has been predicted and observed in pure boron, in bulk phase and controlled by pressure [Nature, 457 (2009) 863]. By using ab initio evolutionary structure search, we report the prediction of ionic boron at a reduced dimension and ambient pressure, namely, the two-dimensional (2D) ionic boron. This 2D boron structure consists of graphene-like plane and B2 atom pairs, with the P6/mmm space group and 6 atoms in the unit cell, and has lower energy than the previously reported α-sheet structure and its analogues. Its dynamical and thermal stability are confirmed by the phonon-spectrum and ab initio molecular dynamics simulation. In addition, this phase exhibits double Dirac cones with massless Dirac fermions due to the significant charge transfer between the graphene-like plane and B2 pair that enhances the energetic stability of the P6/mmm boron. A Fermi velocity (vf) as high as 2.3 x 106 m/s, which is even higher than that of graphene (0.82 x 106 m/s), is predicted for the P6/mmm boron. The present work is the first report of the 2D ionic boron at atmospheric pressure. The unique electronic structure renders the 2D ionic boron a promising 2D material for applications in nanoelectronics.