42 resultados para [ppm]


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bananas are susceptible to a diverse range of biotic and abiotic stresses, many of which cause serious production constraints worldwide. One of the most destructive banana diseases is Fusarium wilt caused by the soil-borne fungus, Fusarium oxysporum f. sp. cubense (Foc). No effective control strategy currently exists for this disease which threatens global banana production. Although disease resistance exists in some wild bananas, attempts to introduce resistance into commercially acceptable bananas by conventional breeding have been hampered by low fertility, long generation times and association of poor agronomical traits with resistance genes. With the advent of reliable banana transformation protocols, molecular breeding is now regarded as a viable alternative strategy to generate disease-resistant banana plants. Recently, a novel strategy involving the expression of anti-apoptosis genes in plants was shown to result in resistance against several necrotrophic fungi. Further, the transgenic plants showed increased resistance to a range of abiotic stresses. In this thesis, the use of anti-apoptosis genes to generate transgenic banana plants with resistance to Fusarium wilt was investigated. Since water stress is an important abiotic constraint to banana production, the resistance of the transgenic plants to water stress was also examined. Embryogenic cell suspensions (ECS) of two commercially important banana cultivars, Grand Naine (GN) and Lady Finger (LF), were transformed using Agrobacterium with the anti-apoptosis genes, Bcl-xL, Bcl-xL G138A, Ced-9 and Bcl- 2 3’ UTR. An interesting, and potentially important, outcome was that the use of anti-apoptosis genes resulted in up to a 50-fold increase in Agrobacterium-mediated transformation efficiency of both LF and GN cells over vector controls. Regenerated plants were subjected to a complete molecular characterisation in order to detect the presence of the transgene (PCR), transcript (RT-PCR) and gene product (Western blot) and to determine the gene copy number (Southern blot). A total of 36 independently-transformed GN lines (8 x Bcl-xL, 5 x Bcl-xL G138A, 15 x Ced-9 and 8 x Bcl-2 3’ UTR) and 41 independently-transformed LF lines (8 x Bcl-xL, 7 x BclxL G138A, 13 x Ced-9 and 13 x Bcl-2 3’ UTR) were identified. The 41 transgenic LF lines were multiplied and clones from each line were acclimatised and grown under glasshouse conditions for 8 weeks to allow monitoring for phenotypic abnormalities. Plants derived from 3 x Bcl-xL, 2 x Ced-9 and 5 x Bcl-2 3’ UTR lines displayed a variety of aberrant phenotypes. However, all but one of these abnormalities were off-types commonly observed in tissue-cultured, non-transgenic banana plants and were therefore unlikely to be transgene-related. Prior to determining the resistance of the transgenic plants to Foc race 1, the apoptotic effects of the fungus on both wild-type and Bcl-2 3’ UTR-transgenic LF banana cells were investigated using rapid in vitro root assays. The results from these assays showed that apoptotic-like cell death was elicited in wild-type banana root cells as early as 6 hours post-exposure to fungal spores. In contrast, these effects were attenuated in the root cells of Bcl-2 3’ UTR-transgenic lines that were exposed to fungal spores. Thirty eight of the 41 transgenic LF lines were subsequently assessed for resistance to Foc race 1 in small-plant glasshouse bioassays. To overcome inconsistencies in rating the internal (vascular discolouration) disease symptoms, a MatLab-based computer program was developed to accurately and reliably assess the level of vascular discolouration in banana corms. Of the transgenic LF banana lines challenged with Foc race 1, 2 x Bcl-xL, 3 x Ced-9, 2 x Bcl-2 3’ UTR and 1 x Bcl-xL G138A-transgenic line were found to show significantly less external and internal symptoms than wild-type LF banana plants used as susceptible controls at 12 weeks post-inoculation. Of these lines, Bcl-2 3’ UTR-transgenic line #6 appeared most resistant, displaying very mild symptoms similar to the wild-type Cavendish banana plants that were included as resistant controls. This line remained resistant for up to 23 weeks post-inoculation. Since anti-apoptosis genes have been shown to confer resistance to various abiotic stresses in other crops, the ability of these genes to confer resistance against water stress in banana was also investigated. Clonal plants derived from each of the 38 transgenic LF banana plants were subjected to water stress for a total of 32 days. Several different lines of transgenic plants transformed with either Bcl-xL, Bcl-xL G138A, Ced-9 or Bcl-2 3’ UTR showed a delay in visual water stress symptoms compared with the wild-type control plants. These plants all began producing new growth from the pseudostem following daily rewatering for one month. In an attempt to determine whether the protective effect of anti-apoptosis genes in transgenic banana plants was linked with reactive oxygen species (ROS)-associated programmed cell death (PCD), the effect of the chloroplast-targeting, ROS-inducing herbicide, Paraquat, on wild-type and transgenic LF was investigated. When leaf discs from wild-type LF banana plants were exposed to 10 ìM Paraquat, complete decolourisation occurred after 48 hours which was confirmed to be associated with cell death and ROS production by trypan blue and 3,3-diaminobenzidine (DAB) staining, respectively. When leaf discs from the transgenic lines were exposed to Paraquat, those derived from some lines showed a delay in decolourisation, suggesting only a weak protective effect from the transgenes. Finally, the protective effect of anti-apoptosis genes against juglone, a ROS-inducing phytotoxin produced by the causal agent of black Sigatoka, Mycosphaerella fijiensis, was investigated. When leaf discs from wild-type LF banana plants were exposed to 25 ppm juglone, complete decolourisation occurred after 48 hours which was again confirmed to be associated with cell death and ROS production by trypan blue and DAB staining, respectively. Further, TdT-mediated dUTP nick-end labelling (TUNEL) assays on these discs suggested that the cell death was apoptotic. When leaf discs from the transgenic lines were exposed to juglone, discs from some lines showed a clear delay in decolourisation, suggesting a protective effect. Whether these plants are resistant to black Sigatoka is unknown and will require future glasshouse and field trials. The work presented in this thesis provides the first report of the use of anti-apoptosis genes as a strategy to confer resistance to Fusarium wilt and water stress in a nongraminaceous monocot, banana. Such a strategy may be exploited to generate resistance to necrotrophic pathogens and abiotic stresses in other economically important crop plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at higher operating temperatures between 100oC to 250oC. The response of the WO3 sensor to NH3, CH4 and Acetaldehyde at lower temperatures (50oC-100oC) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). The WO3 with Fe (WO3:Fe) was found to show some response to Acetaldehyde gas only at relatively higher operating temperature (250oC) and gas concentration of 10 ppm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at operating temperatures between 100 degrees celcius to 250 degrees celcius. The iron doped Tungsten Oxide sensor (WO3:Fe) showed some response to Acetaldehyde gas at relatively higher operating temperature (250 degrees celcius) and gas concentration of 10 ppm. The sensitivity of the WO3 sensor towards NH3, CH4 and Acetaldehyde at lower operating temperatures (50 degrees celcius - 100 degrees celcius) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). From the results, photo-activated WO3 thin film that operates at room temperature appeared to be a promising gas sensor. The overall results indicated that the WO3 sensor exhibited reproducibility for the detection of various gases and the WO3:Fe indicated some response towards Acetaldehyde gas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

World economies increasingly demand reliable and economical power supply and distribution. To achieve this aim the majority of power systems are becoming interconnected, with several power utilities supplying the one large network. One problem that occurs in a large interconnected power system is the regular occurrence of system disturbances which can result in the creation of intra-area oscillating modes. These modes can be regarded as the transient responses of the power system to excitation, which are generally characterised as decaying sinusoids. For a power system operating ideally these transient responses would ideally would have a “ring-down” time of 10-15 seconds. Sometimes equipment failures disturb the ideal operation of power systems and oscillating modes with ring-down times greater than 15 seconds arise. The larger settling times associated with such “poorly damped” modes cause substantial power flows between generation nodes, resulting in significant physical stresses on the power distribution system. If these modes are not just poorly damped but “negatively damped”, catastrophic failures of the system can occur. To ensure system stability and security of large power systems, the potentially dangerous oscillating modes generated from disturbances (such as equipment failure) must be quickly identified. The power utility must then apply appropriate damping control strategies. In power system monitoring there exist two facets of critical interest. The first is the estimation of modal parameters for a power system in normal, stable, operation. The second is the rapid detection of any substantial changes to this normal, stable operation (because of equipment breakdown for example). Most work to date has concentrated on the first of these two facets, i.e. on modal parameter estimation. Numerous modal parameter estimation techniques have been proposed and implemented, but all have limitations [1-13]. One of the key limitations of all existing parameter estimation methods is the fact that they require very long data records to provide accurate parameter estimates. This is a particularly significant problem after a sudden detrimental change in damping. One simply cannot afford to wait long enough to collect the large amounts of data required for existing parameter estimators. Motivated by this gap in the current body of knowledge and practice, the research reported in this thesis focuses heavily on rapid detection of changes (i.e. on the second facet mentioned above). This thesis reports on a number of new algorithms which can rapidly flag whether or not there has been a detrimental change to a stable operating system. It will be seen that the new algorithms enable sudden modal changes to be detected within quite short time frames (typically about 1 minute), using data from power systems in normal operation. The new methods reported in this thesis are summarised below. The Energy Based Detector (EBD): The rationale for this method is that the modal disturbance energy is greater for lightly damped modes than it is for heavily damped modes (because the latter decay more rapidly). Sudden changes in modal energy, then, imply sudden changes in modal damping. Because the method relies on data from power systems in normal operation, the modal disturbances are random. Accordingly, the disturbance energy is modelled as a random process (with the parameters of the model being determined from the power system under consideration). A threshold is then set based on the statistical model. The energy method is very simple to implement and is computationally efficient. It is, however, only able to determine whether or not a sudden modal deterioration has occurred; it cannot identify which mode has deteriorated. For this reason the method is particularly well suited to smaller interconnected power systems that involve only a single mode. Optimal Individual Mode Detector (OIMD): As discussed in the previous paragraph, the energy detector can only determine whether or not a change has occurred; it cannot flag which mode is responsible for the deterioration. The OIMD seeks to address this shortcoming. It uses optimal detection theory to test for sudden changes in individual modes. In practice, one can have an OIMD operating for all modes within a system, so that changes in any of the modes can be detected. Like the energy detector, the OIMD is based on a statistical model and a subsequently derived threshold test. The Kalman Innovation Detector (KID): This detector is an alternative to the OIMD. Unlike the OIMD, however, it does not explicitly monitor individual modes. Rather it relies on a key property of a Kalman filter, namely that the Kalman innovation (the difference between the estimated and observed outputs) is white as long as the Kalman filter model is valid. A Kalman filter model is set to represent a particular power system. If some event in the power system (such as equipment failure) causes a sudden change to the power system, the Kalman model will no longer be valid and the innovation will no longer be white. Furthermore, if there is a detrimental system change, the innovation spectrum will display strong peaks in the spectrum at frequency locations associated with changes. Hence the innovation spectrum can be monitored to both set-off an “alarm” when a change occurs and to identify which modal frequency has given rise to the change. The threshold for alarming is based on the simple Chi-Squared PDF for a normalised white noise spectrum [14, 15]. While the method can identify the mode which has deteriorated, it does not necessarily indicate whether there has been a frequency or damping change. The PPM discussed next can monitor frequency changes and so can provide some discrimination in this regard. The Polynomial Phase Method (PPM): In [16] the cubic phase (CP) function was introduced as a tool for revealing frequency related spectral changes. This thesis extends the cubic phase function to a generalised class of polynomial phase functions which can reveal frequency related spectral changes in power systems. A statistical analysis of the technique is performed. When applied to power system analysis, the PPM can provide knowledge of sudden shifts in frequency through both the new frequency estimate and the polynomial phase coefficient information. This knowledge can be then cross-referenced with other detection methods to provide improved detection benchmarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The removal of toxic anions has been achieved using hydrotalcite via two methods: (1) coprecipitation and (2) thermal activation. Hydrotalcite formed via the coprecipitation method, using solutions containing arsenate and vanadate up to pH 10, are able to remove more than 95% of the toxic anions (0.2 M) from solution. The removal of toxic anions in solutions with a pH of >10 reduces the removal uptake percentage to 75%. Raman spectroscopy observed multiple A1 stretching modes of V−O and As−O at 930 and 810 cm−1, assigned to vanadate and arsenate, respectively. Analysis of the intensity and position of the A1 stretching modes helped to identify the vanadate and arsenate specie intercalated into the hydrotalcite structure. It has been determined that 3:1 hydrotalcite structure predominantly intercalate anions into the interlayer region, while the 2:1 and 4:1 hydrotalcite structures shows a large portion of anions being removed from solution by adsorption processes. Treatment of carbonate solutions (0.2 M) containing arsenate and vanadate (0.2 M) three times with thermally activated hydrotalcite has been shown to remove 76% and 81% of the toxic anions, respectively. Thermally activated hydrotalcite with a Mg:Al ratio of 2:1, 3:1, and 4:1 have all been shown to remove 95% of arsenate and vanadate (25 ppm). At increased concentrations of arsenate and vanadate, the removal uptake percentage decreased significantly, except for the 4:1 thermally activated hydrotalcite. Thermally activated Bayer hydrotalcite has also been shown to be highly effective in the removal of arsenate and vanadate. The thermal activation of the solid residue component (red mud) removes 30% of anions from solution (100 ppm of both anions), while seawater-neutralized red mud removes 70%. The formation of hydrotalcite during the seawater neutralization process removes anions via two mechanisms, rather than one observed for thermally activated red mud.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To examine the ability of silver nano-particles to prevent the growth of Pseudomonas aeruginosa and Staphylococcus aureus in solution or when adsorbed into contact lenses. To examine the ability of silver nano-particles to prevent the growth of Acanthamoeba castellanii. ----- ----- Methods: Etafilcon A lenses were soaked in various concentrations of silver nano-particles. Bacterial cells were then exposed to these lenses, and numbers of viable cells on lens surface or in solution compared to etafilcon A lenses not soaked in silver. Acanthamoeba trophozoites were exposed to silver nano-particles and their ability to form tracks was examined. ----- ----- Results: Silver nano-particle containing lenses reduced bacterial viability and adhesion. There was a dose-dependent response curve, with 10 ppm or 20 ppm silver showing > 5 log reduction in bacterial viability in solution or on the lens surface. For Acanthamoeba, 20 ppm silver reduced the ability to form tracks by approximately 1 log unit. ----- ----- Conclusions: Silver nanoparticles are effective antimicrobial agents, and can reduce the ability of viable bacterial cells to colonise contact lenses once incorporated into the lens.----- ----- Resumen: Objetivos: Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Pseudomonas aeruginosa y Staphylococcus aureus en soluciones para lentes de contacto o cuando éstas las adsorben. Examinar la capacidad de las nanopartículas de plata para prevenir el crecimiento de Acanthamoeba castellanii.----- ----- Métodos: Se sumergieron lentes etafilcon A en diversas concentraciones de nanopartículas de plata. Las células bacterianas fueron posteriormente expuestas a dichas lentes, y se compararon cantidades de células viables en la superficie de la lente o en la solución con las presentes en lentes etafilcon A que no habían sido sumergidas en plata. Trofozoítos de Acanthamoeba fueron expuestos a nanopartículas de plata y se examinó su capacidad para formar quistes.----- ----- Resultados: Las lentes que contienen nanopartículas de plata redujeron la viabilidad bacteriana y la adhesión. Hubo una curva de respuesta dependiente de la dosis, en la que 10 ppm o 20 ppm de plata mostró una reducción logarítmica > 5 en la viabilidad bacteriana tanto en la solución como en la superficie de la lente. Para Acanthamoeba, 20 ppm de plata redujeron la capacidad de formar quistes en aproximadamente 1 unidad logarítmica.----- ----- Conclusiones: Las nanopartículas de plata son agentes antimicrobianos eficaces y pueden reducir la capacidad de células bacterianas viables para colonizar las lentes de contacto una vez que se han incorporado en la lente.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper provides an assessment of the performance of commercial Real Time Kinematic (RTK) systems over longer than recommended inter-station distances. The experiments were set up to test and analyse solutions from the i-MAX, MAX and VRS systems being operated with three triangle shaped network cells, each having an average inter-station distance of 69km, 118km and 166km. The performance characteristics appraised included initialization success rate, initialization time, RTK position accuracy and availability, ambiguity resolution risk and RTK integrity risk in order to provide a wider perspective of the performance of the testing systems. ----- ----- The results showed that the performances of all network RTK solutions assessed were affected by the increase in the inter-station distances to similar degrees. The MAX solution achieved the highest initialization success rate of 96.6% on average, albeit with a longer initialisation time. Two VRS approaches achieved lower initialization success rate of 80% over the large triangle. In terms of RTK positioning accuracy after successful initialisation, the results indicated a good agreement between the actual error growth in both horizontal and vertical components and the accuracy specified in the RMS and part per million (ppm) values by the manufacturers. ----- ----- Additionally, the VRS approaches performed better than the MAX and i-MAX when being tested under the standard triangle network with a mean inter-station distance of 69km. However as the inter-station distance increases, the network RTK software may fail to generate VRS correction and then may turn to operate in the nearest single-base RTK (or RAW) mode. The position uncertainty reached beyond 2 meters occasionally, showing that the RTK rover software was using an incorrect ambiguity fixed solution to estimate the rover position rather than automatically dropping back to using an ambiguity float solution. Results identified that the risk of incorrectly resolving ambiguities reached 18%, 20%, 13% and 25% for i-MAX, MAX, Leica VRS and Trimble VRS respectively when operating over the large triangle network. Additionally, the Coordinate Quality indicator values given by the Leica GX1230 GG rover receiver tended to be over-optimistic and not functioning well with the identification of incorrectly fixed integer ambiguity solutions. In summary, this independent assessment has identified some problems and failures that can occur in all of the systems tested, especially when being pushed beyond the recommended limits. While such failures are expected, they can offer useful insights into where users should be wary and how manufacturers might improve their products. The results also demonstrate that integrity monitoring of RTK solutions is indeed necessary for precision applications, thus deserving serious attention from researchers and system providers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study of photocatalytic oxidation of phenol over titanium dioxide films presents a method for the evaluation of true reaction kinetics. A flat plate reactor was designed for the specific purpose of investigating the influence of various reaction parameters, specifically photocatalytic film thickness, solution flow rate (1–8 l min−1), phenol concentration (20, 40 and 80 ppm), and irradiation intensity (70.6, 57.9, 37.1and 20.4 W m−2), in order to further understand their impact on the reaction kinetics. Special attention was given to the mass transfer phenomena and the influence of film thickness. The kinetics of phenol degradation were investigated with different irradiation levels and initial pollutant concentration. Photocatalytic degradation experiments were performed to evaluate the influence of mass transfer on the reaction and, in addition, the benzoic acid method was applied for the evaluation of mass transfer coefficient. For this study the reactor was modelled as a batch-recycle reactor. A system of equations that accounts for irradiation, mass transfer and reaction rate was developed to describe the photocatalytic process, to fit the experimental data and to obtain kinetic parameters. The rate of phenol photocatalytic oxidation was described by a Langmuir–Hinshelwood type law that included competitive adsorption and degradation of phenol and its by-products. The by-products were modelled through their additive effect on the solution total organic carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured tungsten oxide thin film based gas sensors have been developed by thermal evaporation method to detect CO at low operating temperatures. The influence of Fe-doping and annealing heat treatment on microstructural and gas sensing properties of these films have been investigated. Fe was incorporated in WO3 film by co-evaporation and annealing was performed at 400oC for 2 hours in air. AFM analysis revealed a grain size of about 10-15 nm in all the films. GIXRD analysis showed that as-deposited films are amorphous and annealing at 400oC improved the crystallinity. Raman and XRD analysis indicated that Fe is incorporated in the WO3 matrix as a substitutional impurity, resulting in shorter O-W-O bonds and lattice cell parameters. Doping with Fe contributed significantly towards CO sensing performance of WO3 thin films. A good response to various concentrations (10-1000 ppm) of CO has been achieved with 400oC annealed Fe-doped WO3 film at a low operating temperature of 150oC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas sensing properties of nanostructured pure and iron-doped WO3 thin films are discussed. Electron beam evaporation technique has been used to obtain nanostructured thin films of WO3 and WO3:Fe with small grain size and porosity. Atomic force microscopy has been employed to study the microstructure. High sensitivity of both films towards NO2 is observed. Doping of the tungsten oxide film with Fe decreased the material resistance by a factor of about 30 when exposed to 5 ppm NO2. The high sensitivity is attributed to an improved microstructure of the films obtained through e-beam evaporation technique, and subsequent annealing at 300oC for 1 hour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied. The response towards ammonia, nitrous oxide and nitrogen dioxide was investigated for three sensor configurations, namely pure ZnO nanowires, organic-coated ZnO nanowires and ZnO nanowires covered with a sparse layer of organic-coated ZnO nanoparticles. Exposure of the nanowire sensors to the oxidising gas NO2 produced a significant and reproducible response. ZnO and THMA-coated ZnO nanowire sensors both readily detected NO2 down to a concentration in the very low ppm range. Notably, the THMA-coated nanowires consistently displayed a small, enhanced response to NO2 compared to uncoated ZnO nanowire sensors. At the lower concentration levels tested, ZnO nanowire sensors that were coated with THMA-capped ZnO nanoparticles were found to exhibit the greatest enhanced response. ΔR/R was two times greater than that for the as-prepared ZnO nanowire sensors. It is proposed that the ΔR/R enhancement in this case originates from the changes induced in the depletion-layer width of the ZnO nanoparticles that bridge ZnO nanowires resulting from THMA ligand binding to the surface of the particle coating. The heightened response and selectivity to the NO2 target are positive results arising from the coating of these ZnO nanowire sensors with organic-SAM-functionalised ZnO nanoparticles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study reports on the gas sensing characteristics of Fe-doped (10 at.%) tungsten oxide thin films of various thicknesses (100–500 nm) prepared by electron beam evaporation. The performance of these films in sensing four gases (H2, NH3, NO2 and N2O) in the concentration range 2–10,000 ppm at operating temperatures of 150–280 °C has been investigated. The results are compared with the sensing performance of a pure WO3 film of thickness 300 nm produced by the same method. Doping of the tungsten oxide film with 10 at.% Fe significantly increases the base conductance of the pure film but decreases the gas sensing response. The maximum response measured in this experiment, represented by the relative change in resistance when exposed to a gas, was ΔR/R = 375. This was the response amplitude measured in the presence of 5 ppm NO2 at an operating temperature of 250 °C using a 400 nm thick WO3:Fe film. This value is slightly lower than the corresponding result obtained using the pure WO3 film (ΔR/R = 450). However it was noted that the WO3:Fe sensor is highly selective to NO2, exhibiting a much higher response to NO2 compared to the other gases. The high performance of the sensors to NO2 was attributed to the small grain size and high porosity of the films, which was obtained through e-beam evaporation and post-deposition heat treatment of the films at 300 °C for 1 h in air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Prior in vitro studies, utilizing 31Pn uclear magnetic resonance (31PN MR) to measure the chemical shift (CT) of 0-ATP and lengthening of the phosphocreatine spin-spin (7"') relaxation time, suggested an assessment of their efficacy in measuring magnesium depletion in vivo. Dietary magnesium depletion (Me$) produced markedly lower magnesium in plasma (0.44 vs 1. I3 mmol/liter) and bone (1 30 vs 190 pmol/g) but much smaller changes in muscle (41 vs 45 pmol/g, P < 0.01), heart (42.5 vs 44.6 prnol/g), and brain (30 vs 32 pmollg). NMR experiments in anesthetized rats in a Bruker 7-T vertical bore magnet showed that in M e $ rats there was a significant change in brain j3-ATP shift (16.15 vs 16.03 ppm, P < 0.05). These chemical shifts gave a calculated free [Mg"] of 0.71 mM (control) and 0.48 mM (MgZ+$). In muscle the change in j3-ATP shift was not significant (Me$ 15.99 ppm, controls 15.96 ppm), corresponding to a calculated free M P of 0.83 and 0.95 mM, respectively. Phosphccreatine Tz (Carr-Purcell, spin-echo pulse sequence) was no different with M e $ in muscle in vivo (surface coil) (M$+$ 136, control 142 ms) or in isolated perfused hearts (Helmholtz coil) (control 83, M e $ 92 ms). 3'P NMR is severely limited in its ability to detect dietary magnesium depletion in vivo. Measurement of j3-ATP shift in brain may allow studies of the effects of interaction in group studies but does not allow prediction of an individual magnesium status.