3 resultados para two sector model
em Nottingham eTheses
Resumo:
We study the growth of a tissue construct in a perfusion bioreactor, focussing on its response to the mechanical environment. The bioreactor system is modelled as a two-dimensional channel containing a tissue construct through which a flow of culture medium is driven. We employ a multiphase formulation of the type presented by G. Lemon, J. King, H. Byrne, O. Jensen and K. Shakesheff in their study (Multiphase modelling of tissue growth using the theory of mixtures. J. Math. Biol. 52(2), 2006, 571–594) restricted to two interacting fluid phases, representing a cell population (and attendant extracellular matrix) and a culture medium, and employ the simplifying limit of large interphase viscous drag after S. Franks in her study (Mathematical Modelling of Tumour Growth and Stability. Ph.D. Thesis, University of Nottingham, UK, 2002) and S. Franks and J. King in their study Interactions between a uniformly proliferating tumour and its surrounding: Uniform material properties. Math. Med. Biol. 20, 2003, 47–89). The novel aspects of this study are: (i) the investigation of the effect of an imposed flow on the growth of the tissue construct, and (ii) the inclusion of a chanotransduction mechanism regulating the response of the cells to the local mechanical environment. Specifically, we consider the response of the cells to their local density and the culture medium pressure. As such, this study forms the first step towards a general multiphase formulation that incorporates the effect of mechanotransduction on the growth and morphology of a tissue construct. The model is analysed using analytic and numerical techniques, the results of which illustrate the potential use of the model to predict the dominant regulatory stimuli in a cell population.
Resumo:
To understand the evolution of bipedalism among the homnoids in an ecological context we need to be able to estimate theenerrgetic cost of locomotion in fossil forms. Ideally such an estimate would be based entirely on morphology since, except for the rare instances where footprints are preserved, this is hte only primary source of evidence available. In this paper we use evolutionary robotics techniques (genetic algoritms, pattern generators and mechanical modeling) to produce a biomimentic simulation of bipedalism based on human body dimensions. The mechnaical simulation is a seven-segment, two-dimensional model with motive force provided by tension generators representing the major muscle groups acting around the lower-limb joints. Metabolic energy costs are calculated from the muscel model, and bipedal gait is generated using a finite-state pattern generator whose parameters are produced using a genetic algorithm with locomotor economy (maximum distance for a fixed energy cost) as the fitness criterion. The model is validated by comparing the values it generates with those for modern humans. The result (maximum efficiency of 200 J m-1) is within 15% of the experimentally derived value, which is very encouraging and suggests that this is a useful analytic technique for investigating the locomotor behaviour of fossil forms. Initial work suggests that in the future this technique could be used to estimate other locomotor parameters such as top speed. In addition, the animations produced by this technique are qualitatively very convincing, which suggests that this may also be a useful technique for visualizing bipedal locomotion.
Resumo:
In this paper we establish, from extensive numerical experiments, that the two dimensional stochastic fire-diffuse-fire model belongs to the directed percolation universality class. This model is an idealized model of intracellular calcium release that retains the both the discrete nature of calcium stores and the stochastic nature of release. It is formed from an array of noisy threshold elements that are coupled only by a diffusing signal. The model supports spontaneous release events that can merge to form spreading circular and spiral waves of activity. The critical level of noise required for the system to exhibit a non-equilibrium phase-transition between propagating and non-propagating waves is obtained by an examination of the \textit{local slope} $\delta(t)$ of the survival probability, $\Pi(t) \propto \exp(- \delta(t))$, for a wave to propagate for a time $t$.