1 resultado para standard batch algorithms
em Nottingham eTheses
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archive of European Integration (2)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (85)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Brock University, Canada (19)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (182)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (18)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (78)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (60)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Galway Mayo Institute of Technology, Ireland (2)
- Institute of Public Health in Ireland, Ireland (4)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (60)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (11)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (9)
- Massachusetts Institute of Technology (7)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (12)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (18)
- Repositório da Produção Científica e Intelectual da Unicamp (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (20)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (43)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (4)
- Universidade do Minho (15)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (18)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (11)
- Université de Lausanne, Switzerland (141)
- Université de Montréal, Canada (25)
- University of Queensland eSpace - Australia (56)
- University of Southampton, United Kingdom (5)
- University of Washington (1)
Resumo:
The dendritic cell algorithm (DCA) is an immune-inspired algorithm, developed for the purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which results in a ‘context aware’ detection system. Previous applications of the DCA have included the detection of potentially malicious port scanning activity, where it has produced high rates of true positives and low rates of false positives. In this work we aim to compare the performance of the DCA and of a self-organizing map (SOM) when applied to the detection of SYN port scans, through experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the DCA in terms of the data fusion method employed. It is shown that the results of the two systems are comparable, and both produce false positives for the same processes. This shows that the DCA can produce anomaly detection results to the same standard as an established technique.