3 resultados para self-consistent-field

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The OPIT program is briefly described. OPIT is a basis-set-optimising, self-consistent field, molecular orbital program for calculating properties of closed-shell ground states of atoms and molecules. A file handling technique is then put forward which enables core storage to be used efficiently in large FORTRAN scientific applications programs. Hashing and list processing techniques, of the type frequently used in writing system software and computer operating systems, are here applied to the creation of data files (integral label and value lists etc.). Files consist of a chained series of blocks which may exist in core or on backing store or both. Efficient use of core store is achieved and the processes of file deletion, file re-writing and garbage collection of unused blocks can be easily arranged. The scheme is exemplified with reference to the OPIT program. A subsequent paper will describe a job scheduling scheme for large programs of this sort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.