3 resultados para resting-state networks
em Nottingham eTheses
Resumo:
The evaluation of relativistic spin networks plays a fundamental role in the Barrett-Crane state sum model of Lorentzian quantum gravity in 4 dimensions. A relativistic spin network is a graph labelled by unitary irreducible representations of the Lorentz group appearing in the direct integral decomposition of the space of L^2 functions on three-dimensional hyperbolic space. To `evaluate' such a spin network we must do an integral; if this integral converges we say the spin network is `integrable'. Here we show that a large class of relativistic spin networks are integrable, including any whose underlying graph is the 4-simplex (the complete graph on 5 vertices). This proves a conjecture of Barrett and Crane, whose validity is required for the convergence of their state sum model.
Resumo:
The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.
Resumo:
Ultra-slow fluctuations (0.01-0.1 Hz) are a feature of intrinsic brain activity of as yet unclear origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced suppression of excitation (DISE), which we model phenomenologically. We construct emergent network oscillations in a globally coupled network and show that for strong synaptic coupling DISE can lead to a synchronized population burst at the frequencies of resting brain rhythms.