3 resultados para process dynamics
em Nottingham eTheses
Resumo:
As part of a long-term project aimed at designing classroom interventions to motivate language learners, we have searched for a motivation model that could serve as a theoretical basis for the methodological applications. We have found that none of the existing models we considered were entirely adequate for our purpose for three reasons: (1) they did not provide a sufficiently comprehensive and detailed summary of all the relevant motivational influences on classroom behaviour; (2) they tended to focus on how and why people choose certain courses of action, while ignoring or playing down the importance of motivational sources of executing goal-directed behaviour; and (3) they did not do justice to the fact that motivation is not static but dynamically evolving and changing in time, making it necessary for motivation constructs to contain a featured temporal axis. Consequently, partly inspired by Heckhausen and Kuhl's 'Action Control Theory', we have developed a new 'Process Model of L2 Motivation', which is intended both to account for the dynamics of motivational change in time and to synthesise many of the most important motivational conceptualisations to date. In this paper we describe the main components of this model, also listing a number of its limitations which need to be resolved in future research.
Resumo:
The dynamics of intracellular Ca²⁺ is driven by random events called Ca²⁺ puffs, in which Ca²⁺ is liberated from intracellular stores. We show that the emergence of Ca²⁺ puffs can be mapped to an escape process. The mean first passage times that correspond to the stochastic fraction of puff periods are computed from a novel master equation and two Fokker-Planck equations. Our results demonstrate that the mathematical modeling of Ca²⁺ puffs has to account for the discrete character of the Ca²⁺ release sites and does not permit a continuous description of the number of open channels.
Resumo:
The study of immune system aging, i.e. immunosenescence, is a relatively new research topic. It deals with understanding the processes of immuno-degradation that indicate signs of functionality loss possibly leading to death. Even though it is not possible to prevent immunosenescence, there is great benefit in comprehending its causes, which may help to reverse some of the damage done and thus improve life expectancy. One of the main factors influencing the process of immunosenescence is the number and phenotypical variety of naive T cells in an individual. This work presents a review of immunosenescence, proposes system dynamics modelling of the processes involving the maintenance of the naive T cell repertoire and presents some preliminary results.