4 resultados para principal-agent-problem

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to problem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifically for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based modelling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discrete Event Simulation (DES) is a very popular simulation technique in Operational Research. Recently, there has been the emergence of another technique, namely Agent Based Simulation (ABS). Although there is a lot of literature relating to DES and ABS, we have found less that focuses on exploring the capabilities of both in tackling human behaviour issues. In order to understand the gap between these two simulation techniques, therefore, our aim is to understand the distinctions between DES and ABS models with the real world phenomenon in modelling and simulating human behaviour. In achieving the aim, we have carried out a case study at a department store. Both DES and ABS models will be compared using the same problem domain which is concerning on management policy in a fitting room. The behaviour of staffs while working and customers’ satisfaction will be modelled for both models behaviour understanding.