2 resultados para prefrontal
em Nottingham eTheses
Resumo:
The contribution of the left inferior prefrontal cortex in semantic processing has been widely investigated in the last decade. Converging evidence from functional imaging studies shows that this region is involved in the “executive” or “controlled” aspects of semantic processing. In this study, we report a single case study of a patient, PW, with damage to the right prefrontal and temporal cortices following stroke. PW showed a problem in executive control of semantic processing, where he could not easily override automatic but irrelevant semantic processing. This case thus shows the necessary role of the right inferior prefrontal cortex in executive semantic processing. Compared to tasks previously used in the literature, our tasks placed higher demands on executive semantic processing. We suggest that the right inferior prefrontal cortex is recruited when the demands on executive semantic processing are particularly high.
Resumo:
Little is known about the functional and neural architecture of social reasoning, one major obstacle being that we crucially lack the relevant tools to test potentially different social reasoning components. In the case of belief reasoning, previous studies tried to separate the processes involved in belief reasoning per se from those involved in the processing of the high incidental demands such as the working memory demands of typical belief tasks (e.g., Stone et al., 1998; Samson et al., 2004). In this study, we developed new belief tasks in order to disentangle, for the first time, two perspective taking components involved in belief reasoning: (1) the ability to inhibit one’s own perspective (self-perspective inhibition) and (2) the ability to infer someone else’s perspective as such (other-perspective taking). The two tasks had similar demands in other-perspective taking as they both required the participant to infer that a character has a false belief about an object’s location. However, the tasks varied in the self-perspective inhibition demands. In the task with the lowest self-perspective inhibition demands, at the time the participant had to infer the character’s false belief, he or she had no idea what the new object’s location was. In contrast, in the task with the highest self-perspective inhibition demands, at the time the participant had to infer the character’s false belief, he or she knew where the object was actually located (and this knowledge had thus to be inhibited). The two tasks were presented to a stroke patient, WBA, with right prefrontal and temporal damage. WBA performed well in the low-inhibition false belief task but showed striking difficulty in the task placing high self-perspective inhibition demands, showing a selective deficit in inhibiting self-perspective. WBA also made egocentric errors in other social and visual perspective taking tasks, indicating a difficulty with belief attribution extending to the attribution of emotions, desires and visual experiences to other people. The case of WBA, together with the recent report of three patients impaired in belief reasoning even when self-perspective inhibition demands were reduced (Samson et al., 2004), provide the first neuropsychological evidence that (a) the inhibition of one’s own point of view and (b) the ability to infer someone else’ s point of view, rely on distinct neural and functional processes.