3 resultados para neural networks (computer science)

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a widespread perception among staff in Computer Science that plagiarism is a major problem particularly in the form of collusion in programming exercises. While departments often make use of electronic detection measures, the time consumed prosecuting plagiarism offences remains a problem. As a result departments continue to seek ways to reduce the amount of plagiarism and collusion that occurs. This paper reports the findings of a questionnaire based study which attempted to assess the students' attitudes to the issues involved in the hope that such an understanding might result in practical measures for minimizing the problem. The study revealed that while students did understand the definition of plagiarism in its most extreme cases they were often confused about less clear-cut situations. Changes in the previous experience of incoming students meeting modules originally designed on the assumption that students already had some programming background and were equipped for self-directed study would also appear to be a contributory factor in the extent of collusion in programming exercises.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the effect of two distinct discrete delays on the dynamics of a Wilson-Cowan neural network. This activity based model describes the dynamics of synaptically interacting excitatory and inhibitory neuronal populations. We discuss the interpretation of the delays in the language of neurobiology and show how they can contribute to the generation of network rhythms. First we focus on the use of linear stability theory to show how to destabilise a fixed point, leading to the onset of oscillatory behaviour. Next we show for the choice of a Heaviside nonlinearity for the firing rate that such emergent oscillations can be either synchronous or anti-synchronous depending on whether inhibition or excitation dominates the network architecture. To probe the behaviour of smooth (sigmoidal) nonlinear firing rates we use a mixture of numerical bifurcation analysis and direct simulations, and uncover parameter windows that support chaotic behaviour. Finally we comment on the role of delays in the generation of bursting oscillations, and discuss natural extensions of the work in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-slow fluctuations (0.01-0.1 Hz) are a feature of intrinsic brain activity of as yet unclear origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced suppression of excitation (DISE), which we model phenomenologically. We construct emergent network oscillations in a globally coupled network and show that for strong synaptic coupling DISE can lead to a synchronized population burst at the frequencies of resting brain rhythms.