5 resultados para network models

em Nottingham eTheses


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gap junction coupling is ubiquitous in the brain, particularly between the dendritic trees of inhibitory interneurons. Such direct non-synaptic interaction allows for direct electrical communication between cells. Unlike spike-time driven synaptic neural network models, which are event based, any model with gap junctions must necessarily involve a single neuron model that can represent the shape of an action potential. Indeed, not only do neurons communicating via gaps feel super-threshold spikes, but they also experience, and respond to, sub-threshold voltage signals. In this chapter we show that the so-called absolute integrate-and-fire model is ideally suited to such studies. At the single neuron level voltage traces for the model may be obtained in closed form, and are shown to mimic those of fast-spiking inhibitory neurons. Interestingly in the presence of a slow spike adaptation current the model is shown to support periodic bursting oscillations. For both tonic and bursting modes the phase response curve can be calculated in closed form. At the network level we focus on global gap junction coupling and show how to analyze the asynchronous firing state in large networks. Importantly, we are able to determine the emergence of non-trivial network rhythms due to strong coupling instabilities. To illustrate the use of our theoretical techniques (particularly the phase-density formalism used to determine stability) we focus on a spike adaptation induced transition from asynchronous tonic activity to synchronous bursting in a gap-junction coupled network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review mathematical aspects of biophysical dynamics, signal transduction and network architecture that have been used to uncover functionally significant relations between the dynamics of single neurons and the networks they compose. We focus on examples that combine insights from these three areas to expand our understanding of systems neuroscience. These range from single neuron coding to models of decision making and electrosensory discrimination by networks and populations, as well as coincidence detection in pairs of dendrites and the dynamics of large networks of excitable dendritic spines. We conclude by describing some of the challenges that lie ahead as the applied mathematics community seeks to provide the tools that will ultimately underpin systems neuroscience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many geological formations consist of crystalline rocks that have very low matrix permeability but allow flow through an interconnected network of fractures. Understanding the flow of groundwater through such rocks is important in considering disposal of radioactive waste in underground repositories. A specific area of interest is the conditioning of fracture transmissivities on measured values of pressure in these formations. This is the process where the values of fracture transmissivities in a model are adjusted to obtain a good fit of the calculated pressures to measured pressure values. While there are existing methods to condition transmissivity fields on transmissivity, pressure and flow measurements for a continuous porous medium there is little literature on conditioning fracture networks. Conditioning fracture transmissivities on pressure or flow values is a complex problem because the measurements are not linearly related to the fracture transmissivities and they are also dependent on all the fracture transmissivities in the network. We present a new method for conditioning fracture transmissivities on measured pressure values based on the calculation of certain basis vectors; each basis vector represents the change to the log transmissivity of the fractures in the network that results in a unit increase in the pressure at one measurement point whilst keeping the pressure at the remaining measurement points constant. The fracture transmissivities are updated by adding a linear combination of basis vectors and coefficients, where the coefficients are obtained by minimizing an error function. A mathematical summary of the method is given. This algorithm is implemented in the existing finite element code ConnectFlow developed and marketed by Serco Technical Services, which models groundwater flow in a fracture network. Results of the conditioning are shown for a number of simple test problems as well as for a realistic large scale test case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with a stochastic SIR (susceptible-infective-removed) model for the spread of an epidemic amongst a population of individuals, with a random network of social contacts, that is also partitioned into households. The behaviour of the model as the population size tends to infinity in an appropriate fashion is investigated. A threshold parameter which determines whether or not an epidemic with few initial infectives can become established and lead to a major outbreak is obtained, as are the probability that a major outbreak occurs and the expected proportion of the population that are ultimately infected by such an outbreak, together with methods for calculating these quantities. Monte Carlo simulations demonstrate that these asymptotic quantities accurately reflect the behaviour of finite populations, even for only moderately sized finite populations. The model is compared and contrasted with related models previously studied in the literature. The effects of the amount of clustering present in the overall population structure and the infectious period distribution on the outcomes of the model are also explored.