1 resultado para mixed verification methods
em Nottingham eTheses
Filtro por publicador
- Repository Napier (2)
- Aberdeen University (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (19)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (186)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (17)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (2)
- Cochin University of Science & Technology (CUSAT), India (7)
- Coffee Science - Universidade Federal de Lavras (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (14)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (4)
- Digital Commons at Florida International University (12)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (13)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (86)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (5)
- Massachusetts Institute of Technology (1)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (46)
- Repositório da Produção Científica e Intelectual da Unicamp (14)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (10)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (54)
- Scielo España (3)
- Scielo Saúde Pública - SP (68)
- Universidad de Alicante (6)
- Universidad Politécnica de Madrid (16)
- Universidade do Minho (17)
- Universidade dos Açores - Portugal (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (24)
- Université de Montréal (2)
- Université de Montréal, Canada (6)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (151)
- University of Washington (2)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.