2 resultados para interictal spikes
em Nottingham eTheses
Resumo:
Post inhibitory rebound is a nonlinear phenomenon present in a variety of nerve cells. Following a period of hyper-polarization this effect allows a neuron to fire a spike or packet of spikes before returning to rest. It is an important mechanism underlying central pattern generation for heartbeat, swimming and other motor patterns in many neuronal systems. In this paper we consider how networks of neurons, which do not intrinsically oscillate, may make use of inhibitory synaptic connections to generate large scale coherent rhythms in the form of cluster states. We distinguish between two cases i) where the rebound mechanism is due to anode break excitation and ii) where rebound is due to a slow T-type calcium current. In the former case we use a geometric analysis of a McKean type model to obtain expressions for the number of clusters in terms of the speed and strength of synaptic coupling. Results are found to be in good qualitative agreement with numerical simulations of the more detailed Hodgkin-Huxley model. In the second case we consider a particular firing rate model of a neuron with a slow calcium current that admits to an exact analysis. Once again existence regions for cluster states are explicitly calculated. Both mechanisms are shown to prefer globally synchronous states for slow synapses as long as the strength of coupling is sufficiently large. With a decrease in the duration of synaptic inhibition both systems are found to break into clusters. A major difference between the two mechanisms for cluster generation is that anode break excitation can support clusters with several groups, whilst slow T-type calcium currents predominantly give rise to clusters of just two (anti-synchronous) populations.
Resumo:
Gap junction coupling is ubiquitous in the brain, particularly between the dendritic trees of inhibitory interneurons. Such direct non-synaptic interaction allows for direct electrical communication between cells. Unlike spike-time driven synaptic neural network models, which are event based, any model with gap junctions must necessarily involve a single neuron model that can represent the shape of an action potential. Indeed, not only do neurons communicating via gaps feel super-threshold spikes, but they also experience, and respond to, sub-threshold voltage signals. In this chapter we show that the so-called absolute integrate-and-fire model is ideally suited to such studies. At the single neuron level voltage traces for the model may be obtained in closed form, and are shown to mimic those of fast-spiking inhibitory neurons. Interestingly in the presence of a slow spike adaptation current the model is shown to support periodic bursting oscillations. For both tonic and bursting modes the phase response curve can be calculated in closed form. At the network level we focus on global gap junction coupling and show how to analyze the asynchronous firing state in large networks. Importantly, we are able to determine the emergence of non-trivial network rhythms due to strong coupling instabilities. To illustrate the use of our theoretical techniques (particularly the phase-density formalism used to determine stability) we focus on a spike adaptation induced transition from asynchronous tonic activity to synchronous bursting in a gap-junction coupled network.