6 resultados para intelligent agent
em Nottingham eTheses
Resumo:
The major function of this model is to access the UCI Wisconsin Breast Cancer data-set[1] and classify the data items into two categories, which are normal and anomalous. This kind of classification can be referred as anomaly detection, which discriminates anomalous behaviour from normal behaviour in computer systems. One popular solution for anomaly detection is Artificial Immune Systems (AIS). AIS are adaptive systems inspired by theoretical immunology and observed immune functions, principles and models which are applied to problem solving. The Dendritic Cell Algorithm (DCA)[2] is an AIS algorithm that is developed specifically for anomaly detection. It has been successfully applied to intrusion detection in computer security. It is believed that agent-based modelling is an ideal approach for implementing AIS, as intelligent agents could be the perfect representations of immune entities in AIS. This model evaluates the feasibility of re-implementing the DCA in an agent-based simulation environment called AnyLogic, where the immune entities in the DCA are represented by intelligent agents. If this model can be successfully implemented, it makes it possible to implement more complicated and adaptive AIS models in the agent-based simulation environment.
Resumo:
Intelligent agents offer a new and exciting way of understanding the world of work. In this paper we apply agent-based modeling and simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents could offer potential for fostering sustainable organizational capabilities in the future. The project is still at an early stage. So far we have conducted a case study in a UK department store to collect data and capture impressions about operations and actors within departments. Furthermore, based on our case study we have built and tested our first version of a retail branch simulator which we will present in this paper.
Resumo:
We apply Agent-Based Modeling and Simulation (ABMS) to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents do offer potential for developing organizational capabilities in the future. Our multi-disciplinary research team has worked with a UK department store to collect data and capture perceptions about operations from actors within departments. Based on this case study work, we have built a simulator that we present in this paper. We then use the simulator to gather empirical evidence regarding two specific management practices: empowerment and employee development.
Resumo:
Intelligent agents offer a new and exciting way of understanding the world of work. Agent-Based Simulation (ABS), one way of using intelligent agents, carries great potential for progressing our understanding of management practices and how they link to retail performance. We have developed simulation models based on research by a multi-disciplinary team of economists, work psychologists and computer scientists. We will discuss our experiences of implementing these concepts working with a well-known retail department store. There is no doubt that management practices are linked to the performance of an organisation (Reynolds et al., 2005; Wall & Wood, 2005). Best practices have been developed, but when it comes down to the actual application of these guidelines considerable ambiguity remains regarding their effectiveness within particular contexts (Siebers et al., forthcoming a). Most Operational Research (OR) methods can only be used as analysis tools once management practices have been implemented. Often they are not very useful for giving answers to speculative ‘what-if’ questions, particularly when one is interested in the development of the system over time rather than just the state of the system at a certain point in time. Simulation can be used to analyse the operation of dynamic and stochastic systems. ABS is particularly useful when complex interactions between system entities exist, such as autonomous decision making or negotiation. In an ABS model the researcher explicitly describes the decision process of simulated actors at the micro level. Structures emerge at the macro level as a result of the actions of the agents and their interactions with other agents and the environment. We will show how ABS experiments can deal with testing and optimising management practices such as training, empowerment or teamwork. Hence, questions such as “will staff setting their own break times improve performance?” can be investigated.
Resumo:
Intelligent agents offer a new and exciting way of understanding the world of work. We apply agent-based simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Our multi-disciplinary research team draws upon expertise from work psychologists and computer scientists. Our research so far has led us to conduct case study work with a top ten UK retailer. Based on our case study experience and data we are developing a simulator that can be used to investigate the impact of management practices (e.g. training, empowerment, teamwork) on customer satisfaction and retail productivity.
Resumo:
Agent-based modelling and simulation offers a new and exciting way of understanding the world of work. In this paper we describe the development of an agent-based simulation model, designed to help to understand the relationship between human resource management practices and retail productivity. We report on the current development of our simulation model which includes new features concerning the evolution of customers over time. To test some of these features we have conducted a series of experiments dealing with customer pool sizes, standard and noise reduction modes, and the spread of the word of mouth. Our multidisciplinary research team draws upon expertise from work psychologists and computer scientists. Despite the fact we are working within a relatively novel and complex domain, it is clear that intelligent agents offer potential for fostering sustainable organisational capabilities in the future.