6 resultados para higher level collective agrrement
em Nottingham eTheses
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence, higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the agents on solution quality are examined for two multiple-choice optimisation problems. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
This paper combines the idea of a hierarchical distributed genetic algorithm with different inter-agent partnering strategies. Cascading clusters of sub-populations are built from bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes for (sub-)fitness evaluation purposes are examined for two multiple-choice optimisation problems. It is shown that random partnering strategies perform best by providing better sampling and more diversity.
Resumo:
This paper examines the use of a hierarchical coevolutionary genetic algorithm under different partnering strategies. Cascading clusters of sub-populations are built from the bottom up, with higher-level sub-populations optimising larger parts of the problem. Hence higher-level sub-populations potentially search a larger search space with a lower resolution whilst lower-level sub-populations search a smaller search space with a higher resolution. The effects of different partner selection schemes amongst the sub-populations on solution quality are examined for two constrained optimisation problems. We examine a number of recombination partnering strategies in the construction of higher-level individuals and a number of related schemes for evaluating sub-solutions. It is shown that partnering strategies that exploit problem-specific knowledge are superior and can counter inappropriate (sub-) fitness measurements.
Resumo:
Secure transmission of bulk data is of interest to many content providers. A commercially-viable distribution of content requires technology to prevent unauthorised access. Encryption tools are powerful, but have a performance cost. Without encryption, intercepted data may be illicitly duplicated and re-sold, or its commercial value diminished because its secrecy is lost. Two technical solutions make it possible to perform bulk transmissions while retaining security without too high a performance overhead. These are: 1. a) hierarchical encryption - the stronger the encryption, the harder it is to break but also the more computationally expensive it is. A hierarchical approach to key exchange means that simple and relatively weak encryption and keys are used to encrypt small chunks of data, for example 10 seconds of video. Each chunk has its own key. New keys for this bottom-level encryption are exchanged using a slightly stronger encryption, for example a whole-video key could govern the exchange of the 10-second chunk keys. At a higher level again, there could be daily or weekly keys, securing the exchange of whole-video keys, and at a yet higher level, a subscriber key could govern the exchange of weekly keys. At higher levels, the encryption becomes stronger but is used less frequently, so that the overall computational cost is minimal. The main observation is that the value of each encrypted item determines the strength of the key used to secure it. 2. b) non-symbolic fragmentation with signal diversity - communications are usually assumed to be sent over a single communications medium, and the data to have been encrypted and/or partitioned in whole-symbol packets. Network and path diversity break up a file or data stream into fragments which are then sent over many different channels, either in the same network or different networks. For example, a message could be transmitted partly over the phone network and partly via satellite. While TCP/IP does a similar thing in sending different packets over different paths, this is done for load-balancing purposes and is invisible to the end application. Network and path diversity deliberately introduce the same principle as a secure communications mechanism - an eavesdropper would need to intercept not just one transmission path but all paths used. Non-symbolic fragmentation of data is also introduced to further confuse any intercepted stream of data. This involves breaking up data into bit strings which are subsequently disordered prior to transmission. Even if all transmissions were intercepted, the cryptanalyst still needs to determine fragment boundaries and correctly order them. These two solutions depart from the usual idea of data encryption. Hierarchical encryption is an extension of the combined encryption of systems such as PGP but with the distinction that the strength of encryption at each level is determined by the "value" of the data being transmitted. Non- symbolic fragmentation suppresses or destroys bit patterns in the transmitted data in what is essentially a bit-level transposition cipher but with unpredictable irregularly-sized fragments. Both technologies have applications outside the commercial and can be used in conjunction with other forms of encryption, being functionally orthogonal.
Resumo:
Coinduction is a proof rule. It is the dual of induction. It allows reasoning about non--well--founded structures such as lazy lists or streams and is of particular use for reasoning about equivalences. A central difficulty in the automation of coinductive proof is the choice of a relation (called a bisimulation). We present an automation of coinductive theorem proving. This automation is based on the idea of proof planning. Proof planning constructs the higher level steps in a proof, using knowledge of the general structure of a family of proofs and exploiting this knowledge to control the proof search. Part of proof planning involves the use of failure information to modify the plan by the use of a proof critic which exploits the information gained from the failed proof attempt. Our approach to the problem was to develop a strategy that makes an initial simple guess at a bisimulation and then uses generalisation techniques, motivated by a critic, to refine this guess, so that a larger class of coinductive problems can be automatically verified. The implementation of this strategy has focused on the use of coinduction to prove the equivalence of programs in a small lazy functional language which is similar to Haskell. We have developed a proof plan for coinduction and a critic associated with this proof plan. These have been implemented in CoClam, an extended version of Clam with encouraging results. The planner has been successfully tested on a number of theorems.
Resumo:
This paper presents our work on analysing the high level search within a graph based hyperheuristic. The graph based hyperheuristic solves the problem at a higher level by searching through permutations of graph heuristics rather than the actual solutions. The heuristic permutations are then used to construct the solutions. Variable Neighborhood Search, Steepest Descent, Iterated Local Search and Tabu Search are compared. An analysis of their performance within the high level search space of heuristics is also carried out. Experimental results on benchmark exam timetabling problems demonstrate the simplicity and efficiency of this hyperheuristic approach. They also indicate that the choice of the high level search methodology is not crucial and the high level search should explore the heuristic search space as widely as possible within a limited searching time. This simple and general graph based hyperheuristic may be applied to a range of timetabling and optimisation problems.