1 resultado para hedonic regression
em Nottingham eTheses
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (1)
- Academic Research Repository at Institute of Developing Economies (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (3)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (2)
- Aston University Research Archive (44)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (171)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (54)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CentAUR: Central Archive University of Reading - UK (70)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (24)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (39)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (4)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (24)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (5)
- Duke University (2)
- Glasgow Theses Service (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (18)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (100)
- Repositório digital da Fundação Getúlio Vargas - FGV (7)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (79)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (17)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (14)
- Universidade do Minho (1)
- Universidade dos Açores - Portugal (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (51)
- Université de Montréal (1)
- Université de Montréal, Canada (12)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (2)
- University of Michigan (9)
- University of Queensland eSpace - Australia (34)
- University of Southampton, United Kingdom (4)
- University of Washington (3)
Resumo:
Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.