1 resultado para harmonic oscillator elementary review classical quantum
em Nottingham eTheses
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- Aberdeen University (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (30)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (36)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (203)
- Biodiversity Heritage Library, United States (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (45)
- Brock University, Canada (7)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CentAUR: Central Archive University of Reading - UK (12)
- Cochin University of Science & Technology (CUSAT), India (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (27)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (11)
- Diposit Digital de la UB - Universidade de Barcelona (43)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (2)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Politécnico do Porto, Portugal (3)
- Memoria Académica - FaHCE, UNLP - Argentina (9)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (12)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório da Produção Científica e Intelectual da Unicamp (30)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositorio Institucional de la Universidad de La Laguna (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (200)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- Scielo Saúde Pública - SP (10)
- Universidad de Alicante (27)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (16)
- Université de Montréal, Canada (12)
- University of Connecticut - USA (7)
- University of Michigan (12)
- University of Queensland eSpace - Australia (98)
- University of Washington (1)
Resumo:
Recent work on state sum models of quantum gravity in 3 and 4 dimensions has led to interest in the `quantum tetrahedron'. Starting with a classical phase space whose points correspond to geometries of the tetrahedron in R^3, we use geometric quantization to obtain a Hilbert space of states. This Hilbert space has a basis of states labeled by the areas of the faces of the tetrahedron together with one more quantum number, e.g. the area of one of the parallelograms formed by midpoints of the tetrahedron's edges. Repeating the procedure for the tetrahedron in R^4, we obtain a Hilbert space with a basis labelled solely by the areas of the tetrahedron's faces. An analysis of this result yields a geometrical explanation of the otherwise puzzling fact that the quantum tetrahedron has more degrees of freedom in 3 dimensions than in 4 dimensions.