3 resultados para finite element modelling
em Nottingham eTheses
Resumo:
We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.
A class of domain decomposition preconditioners for hp-discontinuous Galerkin finite element methods
Resumo:
In this article we address the question of efficiently solving the algebraic linear system of equations arising from the discretization of a symmetric, elliptic boundary value problem using hp-version discontinuous Galerkin finite element methods. In particular, we introduce a class of domain decomposition preconditioners based on the Schwarz framework, and prove bounds on the condition number of the resulting iteration operators. Numerical results confirming the theoretical estimates are also presented.
Resumo:
This article is concerned with the construction of general isotropic and anisotropic adaptive strategies, as well as hp-mesh refinement techniques, in combination with dual-weighted-residual a posteriori error indicators for the discontinuous Galerkin finite element discretization of compressible fluid flow problems.