2 resultados para field strength

em Nottingham eTheses


Relevância:

70.00% 70.00%

Publicador:

Resumo:

On the presumption that a sharp edge may be represented by a hyperbola, a conformal transformation method is used to derive electric field equations for a sharp edge suspended above a flat plate. A further transformation is then introduced to give electric field components for a sharp edge suspended above a thin slit. Expressions are deduced for the field strength at the vertex of the edge in both arrangements. The calculated electric field components are used to compute ion trajectories in the simple edge/flat-plate case. The results are considered in relation to future study of ion focusing and unimolecular decomposition of ions in field ionization mass spectrometers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we show how to construct the Evans function for traveling wave solutions of integral neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave stability and bifurcation as a function of system parameters, including the speed and strength of synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction and stability analysis of front solutions to a scalar neural field model and a limiting case is shown to recover recent results of L. Zhang [On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential and Integral Equations, 16, (2003), pp.513-536.]. Traveling fronts and pulses are considered in more general models possessing either a linear or piecewise constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front bifurcation and consider parameter regimes that support two stable traveling fronts of different speed. Such fronts may be connected and depending on their relative speed the resulting region of activity can widen or contract. The conditions for the contracting case to lead to a pulse solution are established. The stability of pulses is obtained for a variety of examples, in each case confirming a previously conjectured stability result. Finally we show how this theory may be used to describe the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical simulations show that such an instability can lead to the shedding of a pair of traveling pulses.