3 resultados para feedback control systems -- mathematical models

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We summarise the properties and the fundamental mathematical results associated with basic models which describe coagulation and fragmentation processes in a deterministic manner and in which cluster size is a discrete quantity (an integer multiple of some basic unit size). In particular, we discuss Smoluchowski's equation for aggregation, the Becker-Döring model of simultaneous aggregation and fragmentation, and more general models involving coagulation and fragmentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are many different designs for audio amplifiers. Class-D, or switching, amplifiers generate their output signal in the form of a high-frequency square wave of variable duty cycle (ratio of on time to off time). The square-wave nature of the output allows a particularly efficient output stage, with minimal losses. The output is ultimately filtered to remove components of the spectrum above the audio range. Mathematical models are derived here for a variety of related class-D amplifier designs that use negative feedback. These models use an asymptotic expansion in powers of a small parameter related to the ratio of typical audio frequencies to the switching frequency to develop a power series for the output component in the audio spectrum. These models confirm that there is a form of distortion intrinsic to such amplifier designs. The models also explain why two approaches used commercially succeed in largely eliminating this distortion; a new means of overcoming the intrinsic distortion is revealed by the analysis. Copyright (2006) Society for Industrial and Applied Mathematics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With global markets and global competition, pressures are placed on manufacturing organizations to compress order fulfillment times, meet delivery commitments consistently and also maintain efficiency in operations to address cost issues. This chapter argues for a process perspective on planning, scheduling and control that integrates organizational planning structures, information systems as well as human decision makers. The chapter begins with a reconsideration of the gap between theory and practice, in particular for classical scheduling theory and hierarchical production planning and control. A number of the key studies of industrial practice are then described and their implications noted. A recent model of scheduling practice derived from a detailed study of real businesses is described. Socio-technical concepts are then introduced and their implications for the design and management of planning, scheduling and control systems are discussed. The implications of adopting a process perspective are noted along with insights from knowledge management. An overview is presented of a methodology for the (re-)design of planning, scheduling and control systems that integrates organizational, system and human perspectives. The most important messages from the chapter are then summarized.