4 resultados para endothelial nitric oxide synthase

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) including nitric oxide (NO) and superoxide anion (O2-) are associated with cell migration, proliferation and many growth-related diseases. The objective of this study was to determine whether there was a reciprocal relationship between rat coronary microvascular endothelial cell (CMEC) growth and activity/expressions (mRNA and protein) of endothelial NO synthase (eNOS) and NAD(P)H oxidase enzymes. Proliferating namely, 50% confluent CMEC possessed approximately three-fold increased activity and expression of both enzymes compared to 100% confluent cells. Treatment of CMEC with an inhibitor of eNOS (L-NAME, 100M) increased cell proliferation as assessed via three independent methods i.e. cell counting, determination of total cellular protein levels and [3H]thymidine incorporation. Similarly, treatment of CMEC with pyrogallol (0.3-3 mM), a superoxide anion (O2-)- generator, also increased CMEC growth while spermine NONOate (SpNO), a NO donor, significantly reduced cell growth. Co-incubation of CMEC with a cell permeable superoxide dismutase mimetic (Mn-III-tetrakis-4-benzoic acid-porphyrin; MnTBAP) plus either pyrogallol or NO did not alter cell number and DNA synthesis thereby dismissing the involvement of peroxynitrite (OONO-) in CMEC proliferation. Specific inhibitors of NAD(P)H oxidase but not other ROS-generating enzymes including cyclooxygenase and xanthine oxidase, attenuated cell growth. Transfection of CMEC with antisense p22-phox cDNA, a membrane-bound component of NAD(P)H oxidase, resulted in substantial reduction in [3H]thymidine incorporation, total cellular protein levels and expression of p22-phox protein. These data demonstrate a cross-talk between CMEC growth and eNOS and NAD(P)H oxidase enzyme activity and expression, thus suggesting that the regulation of these enzymes may be critical in preventing the initiation and/or progression of coronary atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antioxidant vitamins C and E have protective properties in genetic hypertension associated with enhanced oxidative stress. This study investigated whether vitamins C and/or E modulate vascular function by regulating enzymatic activities of endothelial nitric oxide synthase (eNOS) and NAD(P)H oxidase using thoracic aortas of 20- to 22-week-old male spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar-Kyoto rats (WKY). SHR aortas had impaired relaxant responses to acetylcholine but not to sodium nitroprusside, despite an 2-fold increase in eNOS activity and NO release. The levels of superoxide anion (O2 ), a potent NO scavenger, and NAD(P)H oxidase activity were also 2-fold higher in SHR aortas. Mechanical but not pharmacological inactivation of endothelium (by rubbing and 100 mol/L L-NAME, respectively) significantly abrogated O2 in both strains. Treatments of SHR aortas with NAD(P)H oxidase inhibitors, namely diphenyleneiodinium and apocynin, significantly diminished O2 production. The incubation of SHR aortas with different concentrations of vitamin C (10 to 100 mol/L) and specifically with high concentrations of vitamin E (100 mol/L) improved endothelial function, reduced superoxide production as well as NAD(P)H oxidase activity, and increased eNOS activity and NO generation in SHR aortas to the levels observed in vitamin C- and E-treated WKY aortas. Our results reveal endothelial NAD(P)H oxidase as the major source of vascular O2 in SHR and also show that vitamins C and E are critical in normalizing genetic endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High blood pressure (BP), pulse pressure (PP), and rate pressure product (RPP) areeach associated independently with a poor outcome in acute ischemic stroke. Whereas nitric oxide (NO) donors, such as glyceryl trinitrate (GTN), lower blood pressure in acute ischemic stroke, their effect on other hemodynamic measures is not known. We performed a systematic review of the effects of NO donors on systemic hemodynamic measures in patients with acute/subacute stroke. Randomized controlled trials were identified from searches of the Cochrane Library, Pubmed, and Embase. Information on hemodynamic measures, including systolic BP (SBP), diastolic BP (DBP), and heart rate, were assessed, and hemodynamic derivatives of these were calculated: PP (PP SBP DBP), mean arterial pressure (MAP DBP PP/3), mid blood pressure (MBP (SBP DBP)/2), pulse pressure index (PPI PP/MAP), and RPP (RPP SBP HR). The effect of treatment on hemodynamic measures was calculated as the weighted mean difference (WMD) between treated and control groups with adjustment for baseline. Results: Three trials involving 145 patients were identified; 93 patients received the NO donor, GTN, and 52 control. As compared with placebo, GTN significantly reduced SBP (WMD -9.80 mmHg, p< 0.001), DBP (WMD -4.43 mmHg, p<0.001), MAP (WMD -6.41 mmHg, p< 0.001), MBP (WMD -7.33 mmHg,p<0.001), PP (WMD -6.11 mmHg, p<0.001 ) and PPI (WMD -0.03, p=0.04 ). 3 GTN increased HR (WMD +3.87 bpm, p<0.001) and non-significantly lowered RPP (WMD -323 mmHg.bpm, p=0.14). Conclusion: The NO donor GTN reduces BP, PP and other derivatives in acute and subacute stroke whilst increasing heart rate.