3 resultados para endothelial function

em Nottingham eTheses


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antioxidant vitamins C and E have protective properties in genetic hypertension associated with enhanced oxidative stress. This study investigated whether vitamins C and/or E modulate vascular function by regulating enzymatic activities of endothelial nitric oxide synthase (eNOS) and NAD(P)H oxidase using thoracic aortas of 20- to 22-week-old male spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar-Kyoto rats (WKY). SHR aortas had impaired relaxant responses to acetylcholine but not to sodium nitroprusside, despite an 2-fold increase in eNOS activity and NO release. The levels of superoxide anion (O2 ), a potent NO scavenger, and NAD(P)H oxidase activity were also 2-fold higher in SHR aortas. Mechanical but not pharmacological inactivation of endothelium (by rubbing and 100 mol/L L-NAME, respectively) significantly abrogated O2 in both strains. Treatments of SHR aortas with NAD(P)H oxidase inhibitors, namely diphenyleneiodinium and apocynin, significantly diminished O2 production. The incubation of SHR aortas with different concentrations of vitamin C (10 to 100 mol/L) and specifically with high concentrations of vitamin E (100 mol/L) improved endothelial function, reduced superoxide production as well as NAD(P)H oxidase activity, and increased eNOS activity and NO generation in SHR aortas to the levels observed in vitamin C- and E-treated WKY aortas. Our results reveal endothelial NAD(P)H oxidase as the major source of vascular O2 in SHR and also show that vitamins C and E are critical in normalizing genetic endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: Hyperglycaemia (HG), in stroke patients, is associated with worse neurological outcome by compromising endothelial cell function and the blood–brain barrier (BBB) integrity. We have studied the contribution of HG-mediated generation of oxidative stress to these pathologies and examined whether antioxidants as well as normalization of glucose levels following hyperglycaemic insult reverse these phenomena. Methods: Human brain microvascular endothelial cell (HBMEC) and human astrocyte co-cultures were used to simulate the human BBB. The integrity of the BBB was measured by transendothelial electrical resistance using STX electrodes and an EVOM resistance meter, while enzyme activities were measured by specific spectrophotometric assays. Results: After 5 days of hyperglycaemic insult, there was a significant increase in BBB permeability that was reversed by glucose normalization. Co-treatment of cells with HG and a number of antioxidants including vitamin C, free radical scavengers and antioxidant enzymes including catalase and superoxide dismutase mimetics attenuated the detrimental effects of HG. Inhibition of p38 mitogen-activated protein kinase (p38MAPK) and protein kinase C but not phosphoinositide 3 kinase (PI3 kinase) also reversed HG-induced BBB hyperpermeability. In HBMEC, HG enhanced pro-oxidant (NAD(P)H oxidase) enzyme activity and expression that were normalized by reverting to normoglycaemia. Conclusions: HG impairs brain microvascular endothelial function through involvements of oxidative stress and several signal transduction pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.