2 resultados para empirical data

em Nottingham eTheses


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Electoral researchers are so much accustomed to analyzing the choice of the single most preferred party as the left-hand side variable of their models of electoral behavior that they often ignore revealed preference data. Drawing on random utility theory, their models predict electoral behavior at the extensive margin of choice. Since the seminal work of Luce and others on individual choice behavior, however, many social science disciplines (consumer research, labor market research, travel demand, etc.) have extended their inventory of observed preference data with, for instance, multiple paired comparisons, complete or incomplete rankings, and multiple ratings. Eliciting (voter) preferences using these procedures and applying appropriate choice models is known to considerably increase the efficiency of estimates of causal factors in models of (electoral) behavior. In this paper, we demonstrate the efficiency gain when adding additional preference information to first preferences, up to full ranking data. We do so for multi-party systems of different sizes. We use simulation studies as well as empirical data from the 1972 German election study. Comparing the practical considerations for using ranking and single preference data results in suggestions for choice of measurement instruments in different multi-candidate and multi-party settings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper explores, both with empirical data and with computer simulations, the extent to which modularity characterises experts' knowledge. We discuss a replication of Chase and Simon's (1973) classic method of identifying 'chunks', i.e., perceptual patterns stored in memory and used as units. This method uses data about the placement of pairs of items in a memory task and consists of comparing latencies between these items and the number and type of relations they share. We then compare the human data with simulations carried out with CHREST, a computer model of perception and memory. We show that the model, based upon the acquisition of a large number of chunks, accounts for the human data well. This is taken as evidence that human knowledge is organised in a modular fashion.