16 resultados para detection systems
em Nottingham eTheses
Resumo:
INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.
Resumo:
Network intrusion detection systems are themselves becoming targets of attackers. Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of false alerts sent by the attacker. Although these types of attacks are very hard to stop completely, our aim is to present techniques that improve alert throughput and capacity to such an extent that the resources required to successfully mount the attack become prohibitive. The key idea presented is to combine a token bucket filter with a realtime correlation algorithm. The proposed algorithm throttles alert output from the IDS when an attack is detected. The attack graph used in the correlation algorithm is used to make sure that alerts crucial to forming strategies are not discarded by throttling.
Resumo:
Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules
Resumo:
Network intrusion detection systems are themselves becoming targets of attackers. Alert flood attacks may be used to conceal malicious activity by hiding it among a deluge of false alerts sent by the attacker. Although these types of attacks are very hard to stop completely, our aim is to present techniques that improve alert throughput and capacity to such an extent that the resources required to successfully mount the attack become prohibitive. The key idea presented is to combine a token bucket filter with a realtime correlation algorithm. The proposed algorithm throttles alert output from the IDS when an attack is detected. The attack graph used in the correlation algorithm is used to make sure that alerts crucial to forming strategies are not discarded by throttling.
Resumo:
INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.
Resumo:
Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules
Resumo:
The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.
Resumo:
Network Intrusion Detection Systems (NIDS) monitor a net- work with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDS’s rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to an intrusion detection problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
The analysis of system calls is one method employed by anomaly detection systems to recognise malicious code execution. Similarities can be drawn between this process and the behaviour of certain cells belonging to the human immune system, and can be applied to construct an artificial immune system. A recently developed hypothesis in immunology, the Danger Theory, states that our immune system responds to the presence of intruders through sensing molecules belonging to those invaders, plus signals generated by the host indicating danger and damage. We propose the incorporation of this concept into a responsive intrusion detection system, where behavioural information of the system and running processes is combined with information regarding individual system calls.
Resumo:
Network Intrusion Detection Systems (NIDS) are computer systems which monitor a network with the aim of discerning malicious from benign activity on that network. While a wide range of approaches have met varying levels of success, most IDSs rely on having access to a database of known attack signatures which are written by security experts. Nowadays, in order to solve problems with false positive alerts, correlation algorithms are used to add additional structure to sequences of IDS alerts. However, such techniques are of no help in discovering novel attacks or variations of known attacks, something the human immune system (HIS) is capable of doing in its own specialised domain. This paper presents a novel immune algorithm for application to the IDS problem. The goal is to discover packets containing novel variations of attacks covered by an existing signature base.
Resumo:
Abstract. The use of artificial immune systems in intrusion detection is an appealing concept for two reasons. Firstly, the human immune system provides the human body with a high level of protection from invading pathogens, in a robust, self-organised and distributed manner. Secondly, current techniques used in computer security are not able to cope with the dynamic and increasingly complex nature of computer systems and their security. It is hoped that biologically inspired approaches in this area, including the use of immune-based systems will be able to meet this challenge. Here we collate the algorithms used, the development of the systems and the outcome of their implementation. It provides an introduction and review of the key developments within this field, in addition to making suggestions for future research.
Resumo:
Abstract. Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound immunological concepts.
Resumo:
The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.
Resumo:
The immune system provides an ideal metaphor for anomaly detection in general and computer security in particular. Based on this idea, artificial immune systems have been used for a number of years for intrusion detection, unfortunately so far with little success. However, these previous systems were largely based on immunological theory from the 1970s and 1980s and over the last decade our understanding of immunological processes has vastly improved. In this paper we present two new immune inspired algorithms based on the latest immunological discoveries, such as the behaviour of Dendritic Cells. The resultant algorithms are applied to real world intrusion problems and show encouraging results. Overall, we believe there is a bright future for these next generation artificial immune algorithms