3 resultados para bootstrapping
em Nottingham eTheses
Resumo:
Background: Most large acute stroke trials have been neutral. Functional outcome is usually analysed using a yes or no answer, e.g. death or dependency vs. independence. We assessed which statistical approaches are most efficient in analysing outcomes from stroke trials. Methods: Individual patient data from acute, rehabilitation and stroke unit trials studying the effects of interventions which alter functional outcome were assessed. Outcomes included modified Rankin Scale, Barthel Index, and ‘3 questions’. Data were analysed using a variety of approaches which compare two treatment groups. The results for each statistical test for each trial were then compared. Results: Data from 55 datasets were obtained (47 trials, 54,173 patients). The test results differed substantially so that approaches which use the ordered nature of functional outcome data (ordinal logistic regression, t-test, robust ranks test, bootstrapping the difference in mean rank) were more efficient statistically than those which collapse the data into 2 groups (chi square) (ANOVA p<0.001). The findings were consistent across different types and sizes of trial and for the different measures of functional outcome. Conclusions: When analysing functional outcome from stroke trials, statistical tests which use the original ordered data are more efficient and more likely to yield reliable results. Suitable approaches included ordinal logistic regression, t-test, and robust ranks test.
Resumo:
Background and Purpose—Vascular prevention trials mostly count “yes/no” (binary) outcome events, eg, stroke/no stroke. Analysis of ordered categorical vascular events (eg, fatal stroke/nonfatal stroke/no stroke) is clinically relevant and could be more powerful statistically. Although this is not a novel idea in the statistical community, ordinal outcomes have not been applied to stroke prevention trials in the past. Methods—Summary data on stroke, myocardial infarction, combined vascular events, and bleeding were obtained by treatment group from published vascular prevention trials. Data were analyzed using 10 statistical approaches which allow comparison of 2 ordinal or binary treatment groups. The results for each statistical test for each trial were then compared using Friedman 2-way analysis of variance with multiple comparison procedures. Results—Across 85 trials (335 305 subjects) the test results differed substantially so that approaches which used the ordinal nature of stroke events (fatal/nonfatal/no stroke) were more efficient than those which combined the data to form 2 groups (P0.0001). The most efficient tests were bootstrapping the difference in mean rank, Mann–Whitney U test, and ordinal logistic regression; 4- and 5-level data were more efficient still. Similar findings were obtained for myocardial infarction, combined vascular outcomes, and bleeding. The findings were consistent across different types, designs and sizes of trial, and for the different types of intervention. Conclusions—When analyzing vascular events from prevention trials, statistical tests which use ordered categorical data are more efficient and are more likely to yield reliable results than binary tests. This approach gives additional information on treatment effects by severity of event and will allow trials to be smaller. (Stroke. 2008;39:000-000.)
Resumo:
Background and Purpose—Most large acute stroke trials have been neutral. Functional outcome is usually analyzed using a yes or no answer, eg, death or dependency versus independence. We assessed which statistical approaches are most efficient in analyzing outcomes from stroke trials. Methods—Individual patient data from acute, rehabilitation and stroke unit trials studying the effects of interventions which alter functional outcome were assessed. Outcomes included modified Rankin Scale, Barthel Index, and “3 questions”. Data were analyzed using a variety of approaches which compare 2 treatment groups. The results for each statistical test for each trial were then compared. Results—Data from 55 datasets were obtained (47 trials, 54 173 patients). The test results differed substantially so that approaches which use the ordered nature of functional outcome data (ordinal logistic regression, t test, robust ranks test, bootstrapping the difference in mean rank) were more efficient statistically than those which collapse the data into 2 groups (2; ANOVA, P0.001). The findings were consistent across different types and sizes of trial and for the different measures of functional outcome. Conclusions—When analyzing functional outcome from stroke trials, statistical tests which use the original ordered data are more efficient and more likely to yield reliable results. Suitable approaches included ordinal logistic regression, test, and robust ranks test.