1 resultado para biological models
em Nottingham eTheses
Filtro por publicador
- Aberdeen University (4)
- Aberystwyth University Repository - Reino Unido (6)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (13)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (16)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Digital Commons at Florida International University (3)
- Digital Peer Publishing (10)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (9)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (13)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (8)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (6)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Gulbenkian de Ciência (1)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (20)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (629)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (7)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal do Pará (2)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (26)
- University of Washington (2)
Resumo:
Artificial immune systems (AISs) to date have generally been inspired by naive biological metaphors. This has limited the effectiveness of these systems. In this position paper two ways in which AISs could be made more biologically realistic are discussed. We propose that AISs should draw their inspiration from organisms which possess only innate immune systems, and that AISs should employ systemic models of the immune system to structure their overall design. An outline of plant and invertebrate immune systems is presented, and a number of contemporary systemic models are reviewed. The implications for interdisciplinary research that more biologically-realistic AISs could have is also discussed.