1 resultado para bayesian inference
em Nottingham eTheses
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Aston University Research Archive (24)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (37)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (78)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (50)
- Brock University, Canada (5)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (127)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (25)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (44)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (7)
- Digital Commons - Michigan Tech (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (20)
- Duke University (4)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (2)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (160)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (3)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (13)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (12)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (107)
- Université de Montréal, Canada (29)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (3)
- University of Michigan (1)
- University of Queensland eSpace - Australia (31)
- University of Southampton, United Kingdom (3)
- University of Washington (2)
Resumo:
Statistical methodology is proposed for comparing molecular shapes. In order to account for the continuous nature of molecules, classical shape analysis methods are combined with techniques used for predicting random fields in spatial statistics. Applying a modification of Procrustes analysis, Bayesian inference is carried out using Markov chain Monte Carlo methods for the pairwise alignment of the resulting molecular fields. Superimposing entire fields rather than the configuration matrices of nuclear positions thereby solves the problem that there is usually no clear one--to--one correspondence between the atoms of the two molecules under consideration. Using a similar concept, we also propose an adaptation of the generalised Procrustes analysis algorithm for the simultaneous alignment of multiple molecular fields. The methodology is applied to a dataset of 31 steroid molecules.