2 resultados para approximation method
em Nottingham eTheses
Resumo:
In this article we consider the development of discontinuous Galerkin finite element methods for the numerical approximation of the compressible Navier-Stokes equations. For the discretization of the leading order terms, we propose employing the generalization of the symmetric version of the interior penalty method, originally developed for the numerical approximation of linear self-adjoint second-order elliptic partial differential equations. In order to solve the resulting system of nonlinear equations, we exploit a (damped) Newton-GMRES algorithm. Numerical experiments demonstrating the practical performance of the proposed discontinuous Galerkin method with higher-order polynomials are presented.
Resumo:
We address the question of the rates of convergence of the p-version interior penalty discontinuous Galerkin method (p-IPDG) for second order elliptic problems with non-homogeneous Dirichlet boundary conditions. It is known that the p-IPDG method admits slightly suboptimal a-priori bounds with respect to the polynomial degree (in the Hilbertian Sobolev space setting). An example for which the suboptimal rate of convergence with respect to the polynomial degree is both proven theoretically and validated in practice through numerical experiments is presented. Moreover, the performance of p- IPDG on the related problem of p-approximation of corner singularities is assessed both theoretically and numerically, witnessing an almost doubling of the convergence rate of the p-IPDG method.