2 resultados para Zero sequence components

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portable Document Format (PDF) is a page-oriented, graphically rich format based on PostScript semantics and it is also the format interpreted by the Adobe Acrobat viewers. Although each of the pages in a PDF document is an independent graphic object this property does not necessarily extend to the components (headings, diagrams, paragraphs etc.) within a page. This, in turn, makes the manipulation and extraction of graphic objects on a PDF page into a very difficult and uncertain process. The work described here investigates the advantages of a model wherein PDF pages are created from assemblies of COGs (Component Object Graphics) each with a clearly defined graphic state. The relative positioning of COGs on a PDF page is determined by appropriate "spacer" objects and a traversal of the tree of COGs and spacers determines the rendering order. The enhanced revisability of PDF documents within the COG model is discussed, together with the application of the model in those contexts which require easy revisability coupled with the ability to maintain and amend PDF document structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of reactive oxygen species (ROS) within endothelial cells may have several effects, including alterations in the activity of paracrine factors, gene expression, apoptosis, and cellular injury. Recent studies indicate that a phagocyte-type NAD(P)H oxidase is a major source of endothelial ROS. In contrast to the high-output phagocytic oxidase, the endothelial enzyme has much lower biochemical activity and a different substrate specificity (NADH.NADPH). In the present study, we (1) cloned and characterized the cDNA and predicted amino acid structures of the 2 major subunits of rat coronary microvascular endothelial cell NAD(P)H oxidase, gp91-phox and p22-phox; (2) undertook a detailed comparison with phagocytic NADPH oxidase sequences; and (3) studied the subcellular location of these subunits in endothelial cells. Although these studies revealed an overall high degree of homology (.90%) between the endothelial and phagocytic oxidase subunits, the endothelial gp91-phox sequence has potentially important differences in a putative NADPH-binding domain and in putative glycosylation sites. In addition, the subcellular location of the endothelial gp91-phox and p22-phox subunits is significantly different from that reported for the neutrophil oxidase, in that they are predominantly intracellular and collocated in the vicinity of the endoplasmic reticulum. This first detailed characterization of gp91-phox and p22-phox structure and location in endothelial cells provides new data that may account, in part, for the differences in function between the phagocytic and endothelial NAD(P)H oxidases.