3 resultados para Web databases
em Nottingham eTheses
Resumo:
Artificial Immune Systems have been used successfully to build recommender systems for film databases. In this research, an attempt is made to extend this idea to web site recommendation. A collection of more than 1000 individuals' web profiles (alternatively called preferences / favourites / bookmarks file) will be used. URLs will be classified using the DMOZ (Directory Mozilla) database of the Open Directory Project as our ontology. This will then be used as the data for the Artificial Immune Systems rather than the actual addresses. The first attempt will involve using a simple classification code number coupled with the number of pages within that classification code. However, this implementation does not make use of the hierarchical tree-like structure of DMOZ. Consideration will then be given to the construction of a similarity measure for web profiles that makes use of this hierarchical information to build a better-informed Artificial Immune System.
Resumo:
Artificial Immune Systems have been used successfully to build recommender systems for film databases. In this research, an attempt is made to extend this idea to web site recommendation. A collection of more than 1000 individuals' web profiles (alternatively called preferences / favourites / bookmarks file) will be used. URLs will be classified using the DMOZ (Directory Mozilla) database of the Open Directory Project as our ontology. This will then be used as the data for the Artificial Immune Systems rather than the actual addresses. The first attempt will involve using a simple classification code number coupled with the number of pages within that classification code. However, this implementation does not make use of the hierarchical tree-like structure of DMOZ. Consideration will then be given to the construction of a similarity measure for web profiles that makes use of this hierarchical information to build a better-informed Artificial Immune System.
Resumo:
Background: Statistical analysis of DNA microarray data provides a valuable diagnostic tool for the investigation of genetic components of diseases. To take advantage of the multitude of available data sets and analysis methods, it is desirable to combine both different algorithms and data from different studies. Applying ensemble learning, consensus clustering and cross-study normalization methods for this purpose in an almost fully automated process and linking different analysis modules together under a single interface would simplify many microarray analysis tasks. Results: We present ArrayMining.net, a web-application for microarray analysis that provides easy access to a wide choice of feature selection, clustering, prediction, gene set analysis and cross-study normalization methods. In contrast to other microarray-related web-tools, multiple algorithms and data sets for an analysis task can be combined using ensemble feature selection, ensemble prediction, consensus clustering and cross-platform data integration. By interlinking different analysis tools in a modular fashion, new exploratory routes become available, e.g. ensemble sample classification using features obtained from a gene set analysis and data from multiple studies. The analysis is further simplified by automatic parameter selection mechanisms and linkage to web tools and databases for functional annotation and literature mining. Conclusion: ArrayMining.net is a free web-application for microarray analysis combining a broad choice of algorithms based on ensemble and consensus methods, using automatic parameter selection and integration with annotation databases.