3 resultados para Warren abstract machine
em Nottingham eTheses
Resumo:
In previous work we showed how to verify a compiler for a small language with exceptions. In this article we show how to calculate, as opposed to verify, an abstract machine for this language. The key step is the use of Reynold's defunctionalization, an old program transformation technique that has recently been rejuvenated by the work of Danvy et al.
Resumo:
Starting with an evaluator for a language, an abstract machine for the same language can be mechanically derived using successive program transformations. This has relevance to studying both the space and time properties of programs because these can be estimated by counting transitions of the abstract machine and measuring the size of the additional data structures needed, such as environments and stacks. In this article we use this process to derive a function that accurately counts the number of steps required to evaluate expressions in a simple language.
Resumo:
Computers employing some degree of data flow organisation are now well established as providing a possible vehicle for concurrent computation. Although data-driven computation frees the architecture from the constraints of the single program counter, processor and global memory, inherent in the classic von Neumann computer, there can still be problems with the unconstrained generation of fresh result tokens if a pure data flow approach is adopted. The advantages of allowing serial processing for those parts of a program which are inherently serial, and of permitting a demand-driven, as well as data-driven, mode of operation are identified and described. The MUSE machine described here is a structured architecture supporting both serial and parallel processing which allows the abstract structure of a program to be mapped onto the machine in a logical way.