2 resultados para Value System

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The OPIT program is briefly described. OPIT is a basis-set-optimising, self-consistent field, molecular orbital program for calculating properties of closed-shell ground states of atoms and molecules. A file handling technique is then put forward which enables core storage to be used efficiently in large FORTRAN scientific applications programs. Hashing and list processing techniques, of the type frequently used in writing system software and computer operating systems, are here applied to the creation of data files (integral label and value lists etc.). Files consist of a chained series of blocks which may exist in core or on backing store or both. Efficient use of core store is achieved and the processes of file deletion, file re-writing and garbage collection of unused blocks can be easily arranged. The scheme is exemplified with reference to the OPIT program. A subsequent paper will describe a job scheduling scheme for large programs of this sort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the evolution of a bistable reaction in a one-dimensional stretching flow, as a model for chaotic advection. We derive two reduced systems of ordinary differential equations (ODEs) for the dynamics of the governing advection-reaction-diffusion partial differential equations (PDE), for pulse-like and for plateau-like solutions, based on a non-perturbative approach. This reduction allows us to study the dynamics in two cases: first, close to a saddle-node bifurcation at which a pair of nontrivial steady states are born as the dimensionless reaction rate (Damkoehler number) is increased, and, second, for large Damkoehler number, far away from the bifurcation. The main aim is to investigate the initial-value problem and to determine when an initial condition subject to chaotic stirring will decay to zero and when it will give rise to a nonzero final state. Comparisons with full PDE simulations show that the reduced pulse model accurately predicts the threshold amplitude for a pulse initial condition to give rise to a nontrivial final steady state, and that the reduced plateau model gives an accurate picture of the dynamics of the system at large Damkoehler number. Published in Physica D (2006)