1 resultado para Unsupervised distance learning
em Nottingham eTheses
Filtro por publicador
- JISC Information Environment Repository (5)
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (1)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Aston University Research Archive (18)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (7)
- Boston University Digital Common (8)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (22)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (20)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (7)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (9)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (5)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (9)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (8)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Open University Netherlands (4)
- Portal de Revistas Científicas Complutenses - Espanha (5)
- Projetos e Dissertações em Sistemas de Informação e Gestão do Conhecimento (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- Queensland University of Technology - ePrints Archive (319)
- RDBU - Repositório Digital da Biblioteca da Unisinos (7)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Institucional da Universidade de Aveiro - Portugal (6)
- Repositório Institucional da Universidade de Brasília (3)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (3)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (75)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (10)
- Universidade de Lisboa - Repositório Aberto (6)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (18)
- Universidade Metodista de São Paulo (17)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (2)
- Université de Montréal, Canada (20)
- Université Laval Mémoires et thèses électroniques (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (2)
- University of Queensland eSpace - Australia (12)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Analysis of data without labels is commonly subject to scrutiny by unsupervised machine learning techniques. Such techniques provide more meaningful representations, useful for better understanding of a problem at hand, than by looking only at the data itself. Although abundant expert knowledge exists in many areas where unlabelled data is examined, such knowledge is rarely incorporated into automatic analysis. Incorporation of expert knowledge is frequently a matter of combining multiple data sources from disparate hypothetical spaces. In cases where such spaces belong to different data types, this task becomes even more challenging. In this paper we present a novel immune-inspired method that enables the fusion of such disparate types of data for a specific set of problems. We show that our method provides a better visual understanding of one hypothetical space with the help of data from another hypothetical space. We believe that our model has implications for the field of exploratory data analysis and knowledge discovery.