5 resultados para Unitary similarity
em Nottingham eTheses
Resumo:
In this paper we carry out an investigation of some of the major features of exam timetabling problems with a view to developing a similarity measure. This similarity measure will be used within a case-based reasoning (CBR) system to match a new problem with one from a case-based of previously solved problems. The case base will also store the heuristic for meta-heuristic techniques applied most successfully to each problem stored. The technique(s) stored with the matched case will be retrieved and applied to the new case. The CBR assumption in our system is that similar problems can be solved equally well by the same technique.
Resumo:
A large number of heuristic algorithms have been developed over the years which have been aimed at solving examination timetabling problems. However, many of these algorithms have been developed specifically to solve one particular problem instance or a small subset of instances related to a given real-life problem. Our aim is to develop a more general system which, when given any exam timetabling problem, will produce results which are comparative to those of a specially designed heuristic for that problem. We are investigating a Case based reasoning (CBR) technique to select from a set of algorithms which have been applied successfully to similar problem instances in the past. The assumption in CBR is that similar problems have similar solutions. For our system, the assumption is that an algorithm used to find a good solution to one problem will also produce a good result for a similar problem. The key to the success of the system will be our definition of similarity between two exam timetabling problems. The study will be carried out by running a series of tests using a simple Simulated Annealing Algorithm on a range of problems with differing levels of similarity and examining the data sets in detail. In this paper an initial investigation of the key factors which will be involved in this measure is presented with a discussion of how the definition of good impacts on this.
Resumo:
In this paper we carry out an investigation of some of the major features of exam timetabling problems with a view to developing a similarity measure. This similarity measure will be used within a case-based reasoning (CBR) system to match a new problem with one from a case-based of previously solved problems. The case base will also store the heuristic for meta-heuristic techniques applied most successfully to each problem stored. The technique(s) stored with the matched case will be retrieved and applied to the new case. The CBR assumption in our system is that similar problems can be solved equally well by the same technique.
Resumo:
A large number of heuristic algorithms have been developed over the years which have been aimed at solving examination timetabling problems. However, many of these algorithms have been developed specifically to solve one particular problem instance or a small subset of instances related to a given real-life problem. Our aim is to develop a more general system which, when given any exam timetabling problem, will produce results which are comparative to those of a specially designed heuristic for that problem. We are investigating a Case based reasoning (CBR) technique to select from a set of algorithms which have been applied successfully to similar problem instances in the past. The assumption in CBR is that similar problems have similar solutions. For our system, the assumption is that an algorithm used to find a good solution to one problem will also produce a good result for a similar problem. The key to the success of the system will be our definition of similarity between two exam timetabling problems. The study will be carried out by running a series of tests using a simple Simulated Annealing Algorithm on a range of problems with differing levels of similarity and examining the data sets in detail. In this paper an initial investigation of the key factors which will be involved in this measure is presented with a discussion of how the definition of good impacts on this.
Resumo:
We formulate the Becker-Döring equations for cluster growth in the presence of a time-dependent source of monomer input. In the case of size-independent aggregation and ragmentation rate coefficients we find similarity solutions which are approached in the large time limit. The form of the solutions depends on the rate of monomer input and whether fragmentation is present in the model; four distinct types of solution are found.