2 resultados para Translating and interpreting -- TFC

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Systematic reviews followed by ameta-analysis are carried out in medical research to combine the results of two or more related studies. Stroke trials have struggled to show beneficial effects and meta-analysis should be used more widely throughout the research process to either speed up the development of useful interventions, or halt more quickly research with hazardous or ineffective interventions. Summary of review. This review summarises the clinical research process and illustrates how and when systematic reviews may be used throughout the development programme. Meta-analyses should be performed after observational studies, preclinical studies in experimental stroke, and after phase I, II, and III clinical trials and phase IV clinical surveillance studies. Although meta-analyses most commonly work with summary data, they may be performed to assess relationships between variables (meta-regression) and, ideally, should utilise individual patient data. Meta-analysis techniques may alsoworkwith ordered categorical outcome data (ordinal meta-analysis) and be used to perform indirect comparisons where original trial data do not exist. Conclusion Systematic review/meta-analyses are powerful tools in medical research and should be used throughout the development of all stroke and other interventions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models we build to spatially extended cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.