6 resultados para Transaction systems (Computer systems)

em Nottingham eTheses


Relevância:

50.00% 50.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The biological immune system is a robust, complex, adaptive system that defends the body from foreign pathogens. It is able to categorize all cells (or molecules) within the body as self-cells or non-self cells. It does this with the help of a distributed task force that has the intelligence to take action from a local and also a global perspective using its network of chemical messengers for communication. There are two major branches of the immune system. The innate immune system is an unchanging mechanism that detects and destroys certain invading organisms, whilst the adaptive immune system responds to previously unknown foreign cells and builds a response to them that can remain in the body over a long period of time. This remarkable information processing biological system has caught the attention of computer science in recent years. A novel computational intelligence technique, inspired by immunology, has emerged, called Artificial Immune Systems. Several concepts from the immune have been extracted and applied for solution to real world science and engineering problems. In this tutorial, we briefly describe the immune system metaphors that are relevant to existing Artificial Immune Systems methods. We will then show illustrative real-world problems suitable for Artificial Immune Systems and give a step-by-step algorithm walkthrough for one such problem. A comparison of the Artificial Immune Systems to other well-known algorithms, areas for future work, tips & tricks and a list of resources will round this tutorial off. It should be noted that as Artificial Immune Systems is still a young and evolving field, there is not yet a fixed algorithm template and hence actual implementations might differ somewhat from time to time and from those examples given here.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

INTRODUCTION In recent years computer systems have become increasingly complex and consequently the challenge of protecting these systems has become increasingly difficult. Various techniques have been implemented to counteract the misuse of computer systems in the form of firewalls, antivirus software and intrusion detection systems. The complexity of networks and dynamic nature of computer systems leaves current methods with significant room for improvement. Computer scientists have recently drawn inspiration from mechanisms found in biological systems and, in the context of computer security, have focused on the human immune system (HIS). The human immune system provides an example of a robust, distributed system that provides a high level of protection from constant attacks. By examining the precise mechanisms of the human immune system, it is hoped the paradigm will improve the performance of real intrusion detection systems. This paper presents an introduction to recent developments in the field of immunology. It discusses the incorporation of a novel immunological paradigm, Danger Theory, and how this concept is inspiring artificial immune systems (AIS). Applications within the context of computer security are outlined drawing direct reference to the underlying principles of Danger Theory and finally, the current state of intrusion detection systems is discussed and improvements suggested.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Intrusion Detection Systems (IDSs) provide an important layer of security for computer systems and networks, and are becoming more and more necessary as reliance on Internet services increases and systems with sensitive data are more commonly open to Internet access. An IDS’s responsibility is to detect suspicious or unacceptable system and network activity and to alert a systems administrator to this activity. The majority of IDSs use a set of signatures that define what suspicious traffic is, and Snort is one popular and actively developing open-source IDS that uses such a set of signatures known as Snort rules. Our aim is to identify a way in which Snort could be developed further by generalising rules to identify novel attacks. In particular, we attempted to relax and vary the conditions and parameters of current Snort rules, using a similar approach to classic rule learning operators such as generalisation and specialisation. We demonstrate the effectiveness of our approach through experiments with standard datasets and show that we are able to detect previously undetected variants of various attacks. We conclude by discussing the general effectiveness and appropriateness of generalisation in Snort based IDS rule processing. Keywords: anomaly detection, intrusion detection, Snort, Snort rules