3 resultados para Toll-like Receptor-4
em Nottingham eTheses
Resumo:
As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.
Resumo:
As introduced by Bentley et al. (2005), artificial immune systems (AIS) are lacking tissue, which is present in one form or another in all living multi-cellular organisms. Some have argued that this concept in the context of AIS brings little novelty to the already saturated field of the immune inspired computational research. This article aims to show that such a component of an AIS has the potential to bring an advantage to a data processing algorithm in terms of data pre-processing, clustering and extraction of features desired by the immune inspired system. The proposed tissue algorithm is based on self-organizing networks, such as self-organizing maps (SOM) developed by Kohonen (1996) and an analogy of the so called Toll-Like Receptors (TLR) affecting the activation function of the clusters developed by the SOM.
Resumo:
A new emerging paradigm of Uncertain Risk of Suspicion, Threat and Danger, observed across the field of information security, is described. Based on this paradigm a novel approach to anomaly detection is presented. Our approach is based on a simple yet powerful analogy from the innate part of the human immune system, the Toll-Like Receptors. We argue that such receptors incorporated as part of an anomaly detector enhance the detector’s ability to distinguish normal and anomalous behaviour. In addition we propose that Toll-Like Receptors enable the classification of detected anomalies based on the types of attacks that perpetrate the anomalous behaviour. Classification of such type is either missing in existing literature or is not fit for the purpose of reducing the burden of an administrator of an intrusion detection system. For our model to work, we propose the creation of a taxonomy of the digital Acytota, based on which our receptors are created.