3 resultados para Timed and Probabilistic Automata
em Nottingham eTheses
Resumo:
Information concerning the run-time behaviour of programs ("program profiling") can be of the greatest assistance in improving program efficiency. Two software devices have been developed for use on ICL 1900 Series machines to provide such information. DIDYMUS is probabilistic in approach and uses multi- tasking facilities to sample the instruction addresses used by a program at run time. It will work regardless of the source language of the program and matches the detected addresses against a loader map to produce a histogram. SCAMP is restricted to profiling Algol 68-R programs, but provides deterministic information concerning those language constructs that are monitored. Procedure calls to appropriate counting routines are inserted into the source text in a pre-pass prior to compilation. The profile information is printed out at the end of the program run. It has been found that these two approaches complement each other very effectively.
Resumo:
Our research has shown that schedules can be built mimicking a human scheduler by using a set of rules that involve domain knowledge. This chapter presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling problem that chooses such suitable scheduling rules from a set for each nurse’s assignment. Based on the idea of using probabilistic models, the BOA builds a Bayesian network for the set of promising solutions and samples these networks to generate new candidate solutions. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed algorithm may be suitable for other scheduling problems.
Resumo:
Previous work has shown that robot navigation systems that employ an architecture based upon the idiotypic network theory of the immune system have an advantage over control techniques that rely on reinforcement learning only. This is thought to be a result of intelligent behaviour selection on the part of the idiotypic robot. In this paper an attempt is made to imitate idiotypic dynamics by creating controllers that use reinforcement with a number of different probabilistic schemes to select robot behaviour. The aims are to show that the idiotypic system is not merely performing some kind of periodic random behaviour selection, and to try to gain further insight into the processes that govern the idiotypic mechanism. Trials are carried out using simulated Pioneer robots that undertake navigation exercises. Results show that a scheme that boosts the probability of selecting highly-ranked alternative behaviours to 50% during stall conditions comes closest to achieving the properties of the idiotypic system, but remains unable to match it in terms of all round performance.