1 resultado para Testicular regression
em Nottingham eTheses
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (5)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (42)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (29)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (39)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- Bioline International (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (58)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- Cambridge University Engineering Department Publications Database (65)
- CentAUR: Central Archive University of Reading - UK (52)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (16)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (24)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (25)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (6)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (33)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (4)
- National Center for Biotechnology Information - NCBI (28)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (66)
- Queensland University of Technology - ePrints Archive (71)
- Repositorio Academico Digital UANL (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (180)
- Repositorio Institucional UNISALLE - Colombia (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Scientific Open-access Literature Archive and Repository (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (3)
- Universidad Politécnica de Madrid (13)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (4)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (7)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (12)
- University of Canberra Research Repository - Australia (2)
- University of Connecticut - USA (2)
- University of Michigan (10)
- University of Queensland eSpace - Australia (28)
- University of Southampton, United Kingdom (4)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.