1 resultado para T1-TOPOLOGIES
em Nottingham eTheses
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Aberystwyth University Repository - Reino Unido (3)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (50)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (7)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de la Universidad del Valle - Colombia (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (19)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (17)
- Boston University Digital Common (19)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (58)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (8)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (13)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Indian Institute of Science - Bangalore - Índia (83)
- Infoteca EMBRAPA (2)
- Instituto Politécnico do Porto, Portugal (4)
- Massachusetts Institute of Technology (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (350)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (51)
- Queensland University of Technology - ePrints Archive (102)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (6)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad Nacional Agraria (69)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (5)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (4)
- Université de Lausanne, Switzerland (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (5)
- WestminsterResearch - UK (3)
Resumo:
This paper continues the study of spectral synthesis and the topologies τ∞ and τr on the ideal space of a Banach algebra, concentrating on the class of Banach *-algebras, and in particular on L1-group algebras. It is shown that if a group G is a finite extension of an abelian group then τr is Hausdorff on the ideal space of L1(G) if and only if L1(G) has spectral synthesis, which in turn is equivalent to G being compact. The result is applied to nilpotent groups, [FD]−-groups, and Moore groups. An example is given of a non-compact, non-abelian group G for which L1(G) has spectral synthesis. It is also shown that if G is a non-discrete group then τr is not Hausdorff on the ideal lattice of the Fourier algebra A(G).