2 resultados para Systematic Development

em Nottingham eTheses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanistic models used for prediction should be parsimonious, as models which are over-parameterised may have poor predictive performance. Determining whether a model is parsimonious requires comparisons with alternative model formulations with differing levels of complexity. However, creating alternative formulations for large mechanistic models is often problematic, and usually time-consuming. Consequently, few are ever investigated. In this paper, we present an approach which rapidly generates reduced model formulations by replacing a model’s variables with constants. These reduced alternatives can be compared to the original model, using data based model selection criteria, to assist in the identification of potentially unnecessary model complexity, and thereby inform reformulation of the model. To illustrate the approach, we present its application to a published radiocaesium plant-uptake model, which predicts uptake on the basis of soil characteristics (e.g. pH, organic matter content, clay content). A total of 1024 reduced model formulations were generated, and ranked according to five model selection criteria: Residual Sum of Squares (RSS), AICc, BIC, MDL and ICOMP. The lowest scores for RSS and AICc occurred for the same reduced model in which pH dependent model components were replaced. The lowest scores for BIC, MDL and ICOMP occurred for a further reduced model in which model components related to the distinction between adsorption on clay and organic surfaces were replaced. Both these reduced models had a lower RSS for the parameterisation dataset than the original model. As a test of their predictive performance, the original model and the two reduced models outlined above were used to predict an independent dataset. The reduced models have lower prediction sums of squares than the original model, suggesting that the latter may be overfitted. The approach presented has the potential to inform model development by rapidly creating a class of alternative model formulations, which can be compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Systematic reviews followed by ameta-analysis are carried out in medical research to combine the results of two or more related studies. Stroke trials have struggled to show beneficial effects and meta-analysis should be used more widely throughout the research process to either speed up the development of useful interventions, or halt more quickly research with hazardous or ineffective interventions. Summary of review. This review summarises the clinical research process and illustrates how and when systematic reviews may be used throughout the development programme. Meta-analyses should be performed after observational studies, preclinical studies in experimental stroke, and after phase I, II, and III clinical trials and phase IV clinical surveillance studies. Although meta-analyses most commonly work with summary data, they may be performed to assess relationships between variables (meta-regression) and, ideally, should utilise individual patient data. Meta-analysis techniques may alsoworkwith ordered categorical outcome data (ordinal meta-analysis) and be used to perform indirect comparisons where original trial data do not exist. Conclusion Systematic review/meta-analyses are powerful tools in medical research and should be used throughout the development of all stroke and other interventions