2 resultados para Synthetic cannabinoids

em Nottingham eTheses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gating of sensory (e.g. auditory) information has been demonstrated as a reduction in the auditory-evoked potential responses recorded in the brain of both normal animals and human subjects. Auditory gating is perturbed in schizophrenic patients and pharmacologically by drugs such as amphetamine, phencyclidine or ketamine, which precipitate schizophrenic-like symptoms in normal subjects. The neurobiological basis underlying this sensory gating can be investigated using local field potential recordings from single electrodes. In this paper we use such technology to investigate the role of cannabinoids in sensory gating. Cannabinoids represent a fundamentally new class of retrograde messengers which are released postsynaptically and bind to presynaptic receptors. In this way they allow fine-tuning of neuronal response, and in particular can lead to so-called depolarization-induced suppression of inhibition (DSI). Our experimental results show that application of the exogenous cannabinoid WIN55, 212-2 can abolish sensory gating as measured by the amplitude of local field responses in rat hippocampal region CA3. Importantly we develop a simple firing rate population model of CA3 and show that gating is heavily dependent upon the presence of a slow inhibitory (GABAB) pathway. Moreover, a simple phenomenological model of cannabinoid dynamics underlying DSI is shown to abolish gating in a manner consistent with our experimental findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gating of sensory information can be assessed using an auditory conditioning-test paradigm which measures the reduction in the auditory evoked response to a test stimulus following an initial conditioning stimulus. Recording brainwaves from specific areas of the brain using multiple electrodes is helpful in the study of the neurobiology of sensory gating. In this paper, we use such technology to investigate the role of cannabinoids in sensory gating in the CA3 region of the rat hippocampus. Our experimental results show that application of the exogenous cannabinoid agonist WIN55,212-2 can abolish sensory gating. We have developed a phenomenological model of cannabinoid dynamics incorporated within a spiking neural network model of CA3 with synaptically interacting pyramidal and basket cells. Direct numerical simulations of this model suggest that the basic mechanism for this effect can be traced to the suppression of inhibition of slow GABAB synapses. Furthermore, by working with a simpler mathematical firing rate model we are able to show the robustness of this mechanism for the abolition of sensory gating.