1 resultado para Software-based techniques
em Nottingham eTheses
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (2)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (20)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (35)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (60)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (27)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (11)
- Cochin University of Science & Technology (CUSAT), India (13)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (32)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (24)
- Digital Commons - Michigan Tech (4)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (22)
- Digital Peer Publishing (15)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (34)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (5)
- Hospitais da Universidade de Coimbra (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (2)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Castelo Branco - Portugal (2)
- Instituto Politécnico do Porto, Portugal (80)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (3)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (1)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (37)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Almería (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional dos Hospitais da Universidade Coimbra (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (48)
- Repositorio Institucional Universidad de Medellín (2)
- Research Open Access Repository of the University of East London. (4)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (70)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (19)
- Universidad de Alicante (12)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (64)
- Universidade do Minho (34)
- Universidade dos Açores - Portugal (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (17)
- Universitat de Girona, Spain (10)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (25)
- Université de Montréal, Canada (8)
- University of Michigan (3)
- University of Queensland eSpace - Australia (60)
- University of Washington (2)
Resumo:
Inter-subject parcellation of functional Magnetic Resonance Imaging (fMRI) data based on a standard General Linear Model (GLM) and spectral clustering was recently proposed as a means to alleviate the issues associated with spatial normalization in fMRI. However, for all its appeal, a GLM-based parcellation approach introduces its own biases, in the form of a priori knowledge about the shape of Hemodynamic Response Function (HRF) and task-related signal changes, or about the subject behaviour during the task. In this paper, we introduce a data-driven version of the spectral clustering parcellation, based on Independent Component Analysis (ICA) and Partial Least Squares (PLS) instead of the GLM. First, a number of independent components are automatically selected. Seed voxels are then obtained from the associated ICA maps and we compute the PLS latent variables between the fMRI signal of the seed voxels (which covers regional variations of the HRF) and the principal components of the signal across all voxels. Finally, we parcellate all subjects data with a spectral clustering of the PLS latent variables. We present results of the application of the proposed method on both single-subject and multi-subject fMRI datasets. Preliminary experimental results, evaluated with intra-parcel variance of GLM t-values and PLS derived t-values, indicate that this data-driven approach offers improvement in terms of parcellation accuracy over GLM based techniques.