2 resultados para Sobolev Spaces Besov Spaces Carnot Groups Sub-Laplacians

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We shall consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet boundary conditions. Since such problems are typically not well-defined in the standard H^1-H^1 setting, we will introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore, we will discuss the numerical solution of such problems. Specifically, we employ an hp-discontinuous Galerkin method and derive an L^2-norm a posteriori error estimate. Numerical experiments demonstrate the effectiveness of the proposed error indicator in both the h- and hp-version setting. Indeed, in the latter case exponential convergence of the error is attained as the mesh is adaptively refined.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This paper continues the study of spectral synthesis and the topologies τ∞ and τr on the ideal space of a Banach algebra, concentrating on the class of Banach *-algebras, and in particular on L1-group algebras. It is shown that if a group G is a finite extension of an abelian group then τr is Hausdorff on the ideal space of L1(G) if and only if L1(G) has spectral synthesis, which in turn is equivalent to G being compact. The result is applied to nilpotent groups, [FD]−-groups, and Moore groups. An example is given of a non-compact, non-abelian group G for which L1(G) has spectral synthesis. It is also shown that if G is a non-discrete group then τr is not Hausdorff on the ideal lattice of the Fourier algebra A(G).