1 resultado para Smith, Jim
em Nottingham eTheses
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (6)
- Aston University Research Archive (1)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Bibloteca do Senado Federal do Brasil (2)
- Biodiversity Heritage Library, United States (40)
- Blue Tiger Commons - Lincoln University - USA (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Brock University, Canada (25)
- Cámara de Comercio de Bogotá, Colombia (1)
- CentAUR: Central Archive University of Reading - UK (9)
- Chapman University Digital Commons - CA - USA (9)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (5)
- Digital Archives@Colby (2)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons @ Winthrop University (2)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (18)
- Harvard University (18)
- Instituto Politécnico do Porto, Portugal (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (8)
- Ministerio de Cultura, Spain (10)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (33)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (106)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (4)
- Scielo Saúde Pública - SP (55)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (3)
- Universidad Autónoma de Nuevo León, Mexico (6)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (2)
- Universidade Complutense de Madrid (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (13)
- Université de Montréal, Canada (1)
- University of Michigan (484)
- University of Queensland eSpace - Australia (12)
- University of Southampton, United Kingdom (7)
Resumo:
Abstract: This paper reports a lot-sizing and scheduling problem, which minimizes inventory and backlog costs on m parallel machines with sequence-dependent set-up times over t periods. Problem solutions are represented as product subsets ordered and/or unordered for each machine m at each period t. The optimal lot sizes are determined applying a linear program. A genetic algorithm searches either over ordered or over unordered subsets (which are implicitly ordered using a fast ATSP-type heuristic) to identify an overall optimal solution. Initial computational results are presented, comparing the speed and solution quality of the ordered and unordered genetic algorithm approaches.