4 resultados para Simulations, Quantum Models, Resonant Tunneling Diode

em Nottingham eTheses


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper reviews the construction of quantum field theory on a 4-dimensional spacetime by combinatorial methods, and discusses the recent developments in the direction of a combinatorial construction of quantum gravity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work on state sum models of quantum gravity in 3 and 4 dimensions has led to interest in the `quantum tetrahedron'. Starting with a classical phase space whose points correspond to geometries of the tetrahedron in R^3, we use geometric quantization to obtain a Hilbert space of states. This Hilbert space has a basis of states labeled by the areas of the faces of the tetrahedron together with one more quantum number, e.g. the area of one of the parallelograms formed by midpoints of the tetrahedron's edges. Repeating the procedure for the tetrahedron in R^4, we obtain a Hilbert space with a basis labelled solely by the areas of the tetrahedron's faces. An analysis of this result yields a geometrical explanation of the otherwise puzzling fact that the quantum tetrahedron has more degrees of freedom in 3 dimensions than in 4 dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe and evaluate two reduced models for nonlinear chemical reactions in a chaotic laminar flow. Each model involves two separate steps to compute the chemical composition at a given location and time. The “manifold tracking model” first tracks backwards in time a segment of the stable manifold of the requisite point. This then provides a sample of the initial conditions appropriate for the second step, which requires solving one-dimensional problems for the reaction in Lagrangian coordinates. By contrast, the first step of the “branching trajectories model” simulates both the advection and diffusion of fluid particles that terminate at the appropriate point; the chemical reaction equations are then solved along each of the branched trajectories in a second step. Results from each model are compared with full numerical simulations of the reaction processes in a chaotic laminar flow.