4 resultados para Simulation, Optimisation, Emergency Department, Patient Flow
em Nottingham eTheses
Resumo:
This paper reports on an attempt to apply Genetic Algorithms to the problem of optimising a complex system, through discrete event simulation (Simulation Optimisation), with a view to reducing the noise associated with such a procedure. We are applying this proposed solution approach to our application test bed, a Crossdocking distribution centre, because it provides a good representative of the random and unpredictable behaviour of complex systems i.e. automated machine random failure and the variability of manual order picker skill. It is known that there is noise in the output of discrete event simulation modelling. However, our interest focuses on the effect of noise on the evaluation of the fitness of candidate solutions within the search space, and the development of techniques to handle this noise. The unique quality of our proposed solution approach is we intend to embed a noise reduction technique in our Genetic Algorithm based optimisation procedure, in order for it to be robust enough to handle noise, efficiently estimate suitable fitness function, and produce good quality solutions with minimal computational effort.
Resumo:
This paper reports on continuing research into the modelling of an order picking process within a Crossdocking distribution centre using Simulation Optimisation. The aim of this project is to optimise a discrete event simulation model and to understand factors that affect finding its optimal performance. Our initial investigation revealed that the precision of the selected simulation output performance measure and the number of replications required for the evaluation of the optimisation objective function through simulation influences the ability of the optimisation technique. We experimented with Common Random Numbers, in order to improve the precision of our simulation output performance measure, and intended to use the number of replications utilised for this purpose as the initial number of replications for the optimisation of our Crossdocking distribution centre simulation model. Our results demonstrate that we can improve the precision of our selected simulation output performance measure value using Common Random Numbers at various levels of replications. Furthermore, after optimising our Crossdocking distribution centre simulation model, we are able to achieve optimal performance using fewer simulations runs for the simulation model which uses Common Random Numbers as compared to the simulation model which does not use Common Random Numbers.
Resumo:
Purpose: Current thinking about ‘patient safety’ emphasises the causal relationship between the work environment and the delivery of clinical care. This research draws on the theory of Normal Accidents to extend this analysis and better understand the ‘organisational factors’ that threaten safety. Methods: Ethnographic research methods were used, with observations of the operating department setting for 18 month and interviews with 80 members of hospital staff. The setting for the study was the Operating Department of a large teaching hospital in the North-West of England. Results: The work of the operating department is determined by inter-dependant, ‘tightly coupled’ organisational relationships between hospital departments based upon the timely exchange of information, services and resources required for the delivery of care. Failures within these processes, manifest as ‘breakdowns’ within inter-departmental relationships lead to situations of constraint, rapid change and uncertainty in the work of the operating department that require staff to break with established routines and work with increased time and emotional pressures. This means that staff focus on working quickly, as opposed to working safely. Conclusion: Analysis of safety needs to move beyond a focus on the immediate work environment and individual practice, to consider the more complex and deeply structured organisational systems of hospital activity. For departmental managers the scope for service planning to control for safety may be limited as the structured ‘real world’ situation of service delivery is shaped by inter-department and organisational factors that are perhaps beyond the scope of departmental management.
Resumo:
Discrete Event Simulation (DES) is a very popular simulation technique in Operational Research. Recently, there has been the emergence of another technique, namely Agent Based Simulation (ABS). Although there is a lot of literature relating to DES and ABS, we have found less that focuses on exploring the capabilities of both in tackling human behaviour issues. In order to understand the gap between these two simulation techniques, therefore, our aim is to understand the distinctions between DES and ABS models with the real world phenomenon in modelling and simulating human behaviour. In achieving the aim, we have carried out a case study at a department store. Both DES and ABS models will be compared using the same problem domain which is concerning on management policy in a fitting room. The behaviour of staffs while working and customers’ satisfaction will be modelled for both models behaviour understanding.