5 resultados para Second-order systems of ordinary differential equations

em Nottingham eTheses


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop the a-posteriori error analysis of hp-version interior-penalty discontinuous Galerkin finite element methods for a class of second-order quasilinear elliptic partial differential equations. Computable upper and lower bounds on the error are derived in terms of a natural (mesh-dependent) energy norm. The bounds are explicit in the local mesh size and the local degree of the approximating polynomial. The performance of the proposed estimators within an automatic hp-adaptive refinement procedure is studied through numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the evolution of a bistable reaction in a one-dimensional stretching flow, as a model for chaotic advection. We derive two reduced systems of ordinary differential equations (ODEs) for the dynamics of the governing advection-reaction-diffusion partial differential equations (PDE), for pulse-like and for plateau-like solutions, based on a non-perturbative approach. This reduction allows us to study the dynamics in two cases: first, close to a saddle-node bifurcation at which a pair of nontrivial steady states are born as the dimensionless reaction rate (Damkoehler number) is increased, and, second, for large Damkoehler number, far away from the bifurcation. The main aim is to investigate the initial-value problem and to determine when an initial condition subject to chaotic stirring will decay to zero and when it will give rise to a nonzero final state. Comparisons with full PDE simulations show that the reduced pulse model accurately predicts the threshold amplitude for a pulse initial condition to give rise to a nontrivial final steady state, and that the reduced plateau model gives an accurate picture of the dynamics of the system at large Damkoehler number. Published in Physica D (2006)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop the a posteriori error estimation of interior penalty discontinuous Galerkin discretizations for H(curl)-elliptic problems that arise in eddy current models. Computable upper and lower bounds on the error measured in terms of a natural (mesh-dependent) energy norm are derived. The proposed a posteriori error estimator is validated by numerical experiments, illustrating its reliability and efficiency for a range of test problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtual-Build-to-Order (VBTO) is an emerging order fulfilment system within the automotive sector that is intended to improve fulfilment performance by taking advantage of integrated information systems. The primary innovation in VBTO systems is the ability to make available all unsold products that are in the production pipeline to all customers. In a conventional system the pipeline is inaccessible and a customer can be fulfilled by a product from stock or having a product Built-to-Order (BTO), whereas in a VBTO system a customer can be fulfilled by a product from stock, by being allocated a product in the pipeline, or by a build-to-order product. Simulation is used to investigate and profile the fundamental behaviour of the basic VBTO system and to compare it to a Conventional system. A predictive relationship is identified, between the proportions of customers fulfilled through each mechanism and the ratio of product variety / pipeline length. The simulations reveal that a VBTO system exhibits inherent behaviour that alters the stock mix and levels, leading to stock levels being higher than in an equivalent conventional system at certain variety / pipeline ratios. The results have implications for the design and management of order fulfilment systems in sectors such as automotive where VBTO is a viable operational model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We shall consider the weak formulation of a linear elliptic model problem with discontinuous Dirichlet boundary conditions. Since such problems are typically not well-defined in the standard H^1-H^1 setting, we will introduce a suitable saddle point formulation in terms of weighted Sobolev spaces. Furthermore, we will discuss the numerical solution of such problems. Specifically, we employ an hp-discontinuous Galerkin method and derive an L^2-norm a posteriori error estimate. Numerical experiments demonstrate the effectiveness of the proposed error indicator in both the h- and hp-version setting. Indeed, in the latter case exponential convergence of the error is attained as the mesh is adaptively refined.